plot_outliers {nexus} | R Documentation |
Plot Outliers
Description
Plot Outliers
Usage
## S4 method for signature 'OutlierIndex,missing'
plot(
x,
...,
qq = FALSE,
probs = c(0.25, 0.75),
ncol = NULL,
flip = FALSE,
xlab = NULL,
ylab = NULL,
main = NULL,
sub = NULL,
ann = graphics::par("ann"),
axes = TRUE,
frame.plot = axes,
panel.first = NULL,
panel.last = NULL
)
Arguments
x |
An |
... |
Further graphical parameters. |
qq |
A |
probs |
A length-two |
ncol |
An |
flip |
A |
xlab , ylab |
A |
main |
A |
sub |
A |
ann |
A |
axes |
A |
frame.plot |
A |
panel.first |
An an |
panel.last |
An |
Value
plot()
is called for its side-effects: is results in a graphic being
displayed (invisibly return x
).
Author(s)
N. Frerebeau
References
Filzmoser, P., Garrett, R. G. & Reimann, C. (2005). Multivariate outlier detection in exploration geochemistry. Computers & Geosciences, 31(5), 579-587. doi:10.1016/j.cageo.2004.11.013.
Filzmoser, P. & Hron, K. (2008). Outlier Detection for Compositional Data Using Robust Methods. Mathematical Geosciences, 40(3), 233-248. doi:10.1007/s11004-007-9141-5.
Filzmoser, P., Hron, K. & Reimann, C. (2012). Interpretation of multivariate outliers for compositional data. Computers & Geosciences, 39, 77-85. doi:10.1016/j.cageo.2011.06.014.
See Also
Other outlier detection methods:
outliers()
Examples
## Data from Day et al. 2011
data("kommos", package = "folio") # Coerce to compositional data
kommos <- remove_NA(kommos, margin = 1) # Remove cases with missing values
coda <- as_composition(kommos, groups = 1) # Use ceramic types for grouping
## Detect outliers
out <- outliers(coda, groups = NULL, robust = FALSE)
plot(out) # Plot
plot(out, qq = TRUE) # Quantile-Quantile plot
## Detect outliers by group
out <- outliers(coda[, 1:15, drop = FALSE])
plot(out, ncol = 2) # Plot
plot(out, qq = TRUE, ncol = 4) # Quantile-Quantile plot