| wgd {new.dist} | R Documentation |
Weighted Geometric Distribution
Description
Density, distribution function, quantile function and random generation for the Weighted Geometric distribution.
Usage
dwgd(x, alpha, lambda, log = FALSE)
pwgd(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
qwgd(p, alpha, lambda, lower.tail = TRUE)
rwgd(n, alpha, lambda)
Arguments
x, q |
vector of quantiles. |
alpha, lambda |
are parameters. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Weighted Geometric distribution with parameters \alpha and
\lambda, has density
f\left( x\right) =\frac{\left( 1-\alpha \right)
\left( 1-\alpha ^{\lambda+1}\right) }{1-\alpha ^{\lambda }}\alpha ^{x-1}
\left( 1-\alpha ^{\lambda x}\right),
where
x\in \mathbb {N} =1,2,...~,~\lambda >0~and~0<\alpha <1.
Value
dwgd gives the density, pwgd gives the distribution
function, qwgd gives the quantile function and rwgd generates
random deviates.
References
Najarzadegan, H., Alamatsaz, M. H., Kazemi, I. ve Kundu, D., 2020, Weighted bivariate geometric distribution: Simulation and estimation, Communications in Statistics-Simulation and Computation, 49 (9), 2419-2443.
Examples
library(new.dist)
dwgd(1,alpha=.2,lambda=3)
pwgd(1,alpha=.2,lambda=3)
qwgd(.98,alpha=.2,lambda=3)
rwgd(10,alpha=.2,lambda=3)