sod {new.dist} | R Documentation |
Standard Omega Distribution
Description
Density, distribution function, quantile function and random generation for the Standard Omega distribution.
Usage
dsod(x, alpha, beta, log = FALSE)
psod(q, alpha, beta, lower.tail = TRUE, log.p = FALSE)
qsod(p, alpha, beta, lower.tail = TRUE)
rsod(n, alpha, beta)
Arguments
x , q |
vector of quantiles. |
alpha , beta |
are parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Standard Omega distribution with parameters
\alpha
and \beta
, has density
f\left( x\right) =\alpha \beta x^{\beta -1}\frac{1}{1-x^{2\beta }}
\left( \frac{1+x^{\beta }}{1-x^{\beta }}\right) ^{-\alpha /2},
where
0<x<1,~\alpha ,\beta >0.
Value
dsod
gives the density, psod
gives the distribution
function, qsod
gives the quantile function and rsod
generates
random deviates.
References
Birbiçer, İ. ve Genç, A. İ., 2022, On parameter estimation of the standard omega distribution. Journal of Applied Statistics, 1-17.
Examples
library(new.dist)
dsod(0.4, alpha=1, beta=2)
psod(0.4, alpha=1, beta=2)
qsod(.8, alpha=1, beta=2)
rsod(10, alpha=1, beta=2)