pldd {new.dist} | R Documentation |
Power Log Dagum Distribution
Description
Density, distribution function, quantile function and random generation for
a Power Log Dagum distribution.
Usage
dpldd(x, alpha, beta, theta, log = FALSE)
ppldd(q, alpha, beta, theta, lower.tail = TRUE, log.p = FALSE)
qpldd(p, alpha, beta, theta, lower.tail = TRUE)
rpldd(n, alpha, beta, theta)
Arguments
x , q |
vector of quantiles.
|
alpha , beta , theta |
are parameters.
|
log , log.p |
logical; if TRUE, probabilities p are given as log(p).
|
lower.tail |
logical; if TRUE (default), probabilities are
P[X≤x] , otherwise, P[X>x] .
|
p |
vector of probabilities.
|
n |
number of observations. If length(n) > 1 , the length is taken
to be the number required.
|
Details
A Power Log Dagum Distribution with parameters α
, β
and
θ
, has density
f(x)=α(β+θ∣x∣β−1)e−(βx+sign(x)(θ/β)∣x∣β) (1+e−(βx+sign(x)(θ/β)∣x∣β))−(α+1),
where
x∈R, β∈R, α>0 and θ≥0
Value
dpldd
gives the density, ppldd
gives the distribution
function, qpldd
gives the quantile function and rpldd
generates
random deviates.
Note
The distributions hazard function
h(x)=1−(1+e−(βx+sign(x)(θ/β)∣x∣β))−αα(β+θ∣x∣β−1)e−(βx+sign(x)(θ/β)∣x∣β)(1+e−(βx+sign(x)(θ/β)∣x∣β))−(α+1).
References
Bakouch, H. S., Khan, M. N., Hussain, T. ve Chesneau, C., 2019,
A power log-Dagum distribution: estimation and applications, Journal of
Applied Statistics, 46 (5), 874-892.
Examples
library(new.dist)
dpldd(1, alpha=2, beta=3, theta=4)
ppldd(1,alpha=2,beta=3,theta=4)
qpldd(.8,alpha=2,beta=3,theta=4)
rpldd(10,alpha=2,beta=3,theta=4)
[Package
new.dist version 0.1.1
Index]