| kd {new.dist} | R Documentation |
Kumaraswamy Distribution
Description
Density, distribution function, quantile function and random generation for
Kumaraswamy distribution with shape parameters.
Usage
dkd(x, lambda, alpha, log = FALSE)
pkd(q, lambda, alpha, lower.tail = TRUE, log.p = FALSE)
qkd(p, lambda, alpha, lower.tail = TRUE)
rkd(n, lambda, alpha)
Arguments
x, q |
vector of quantiles. |
alpha, lambda |
are non-negative shape parameters. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
Kumaraswamy distribution with non-negative shape
parameters \alpha and \lambda has density
f\left( x\right) =\alpha \lambda x^{\lambda -1}\left( 1-x^{\lambda }
\right)^{\alpha -1},
where
0<x<1,~~\alpha ,\lambda >0.
Value
dkd gives the density, pkd gives the distribution
function, qkd gives the quantile function and rkd generates
random deviates.
References
Kohansal, A. ve Bakouch, H. S., 2021, Estimation procedures for Kumaraswamy distribution parameters under adaptive type-II hybrid progressive censoring, Communications in Statistics-Simulation and Computation, 50 (12), 4059-4078.
Examples
library("new.dist")
dkd(0.1,lambda=2,alpha=3)
pkd(0.5,lambda=2,alpha=3)
qkd(.8,lambda=2,alpha=3)
rkd(10,lambda=2,alpha=3)