bwd {new.dist} | R Documentation |
Bimodal Weibull Distribution
Description
Density, distribution function, quantile function and random generation for
a Bimodal Weibull distribution with parameters shape
and scale
.
Usage
dbwd(x, alpha, beta = 1, sigma, log = FALSE)
pbwd(q, alpha, beta = 1, sigma, lower.tail = TRUE, log.p = FALSE)
qbwd(p, alpha, beta = 1, sigma, lower.tail = TRUE)
rbwd(n, alpha, beta = 1, sigma)
Arguments
x , q |
vector of quantiles. |
alpha |
a shape parameter. |
beta |
a scale parameter. |
sigma |
a control parameter that controls the uni- or bimodality of the distribution. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
A Bimodal Weibull distribution with shape
parameter \alpha
,
scale
parameter \beta
,and the control
parameter
\sigma
that determines the uni- or bimodality of the
distribution, has density
f\left( x\right) =\frac{\alpha }{\beta Z_{\theta }}
\left[ 1+\left( 1-\sigma~x\right) ^{2}\right] \left( \frac{x}{\beta }
\right) ^{\alpha -1}\exp \left( -\left( \frac{x}{\beta }\right) ^{\alpha }
\right),
where
Z_{\theta }=2+\sigma ^{2}\beta ^{2}\Gamma
\left( 1+\left( 2/\alpha \right)\right) -2\sigma \beta \Gamma
\left( 1+\left( 1/\alpha \right) \right)
and
x\geq 0,~\alpha ,\beta >0~ and ~\sigma \in\mathbb{R}.
Value
dbwd
gives the density, pbwd
gives the distribution
function, qbwd
gives the quantile function and rbwd
generates
random deviates.
References
Vila, R. ve Niyazi Çankaya, M., 2022, A bimodal Weibull distribution: properties and inference, Journal of Applied Statistics, 49 (12), 3044-3062.
Examples
library(new.dist)
dbwd(1,alpha=2,beta=3,sigma=4)
pbwd(1,alpha=2,beta=3,sigma=4)
qbwd(.7,alpha=2,beta=3,sigma=4)
rbwd(10,alpha=2,beta=3,sigma=4)