| Ld {new.dist} | R Documentation |
Lindley Distribution
Description
Density, distribution function, quantile function and random generation for the Lindley distribution.
Usage
dLd(x, theta, log = FALSE)
pLd(q, theta, lower.tail = TRUE, log.p = FALSE)
qLd(p, theta, lower.tail = TRUE)
rLd(n, theta)
Arguments
x, q |
vector of quantiles. |
theta |
a parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Lindley distribution with a parameter \theta, has density
f\left( x\right) =\frac{\theta ^{2}}{1+\theta }\left( 1+x\right)
e^{-\theta~x},
where
x>0,~\theta >0.
Value
dLd gives the density, pLd gives the distribution
function, qLd gives the quantile function and rLd generates
random deviates.
References
Akgül, F. G., Acıtaş, Ş. ve Şenoğlu, B., 2018, Inferences on stress–strength reliability based on ranked set sampling data in case of Lindley distribution, Journal of statistical computation and simulation, 88 (15), 3018-3032.
Examples
library(new.dist)
dLd(1,theta=2)
pLd(1,theta=2)
qLd(.8,theta=1)
rLd(10,theta=1)