killworth {networkscaleup} | R Documentation |
Fit Killworth models to ARD. This function estimates the degrees and population sizes using the plug-in MLE and MLE estimator.
Description
Fit Killworth models to ARD. This function estimates the degrees and population sizes using the plug-in MLE and MLE estimator.
Usage
killworth(
ard,
known_sizes = NULL,
known_ind = 1:length(known_sizes),
N = NULL,
model = c("MLE", "PIMLE")
)
Arguments
ard |
The 'n_i x n_k' matrix of non-negative ARD integer responses, where the '(i,k)th' element corresponds to the number of people that respondent 'i' knows in subpopulation 'k'. |
known_sizes |
The known subpopulation sizes corresponding to a subset of
the columns of |
known_ind |
The indices that correspond to the columns of |
N |
The known total population size. |
model |
A character string corresponding to either the plug-in MLE (PIMLE) or the MLE (MLE). The function assumes MLE by default. |
Value
A named list with the estimated degrees and sizes.
References
Killworth, P. D., Johnsen, E. C., McCarty, C., Shelley, G. A., and Bernard, H. R. (1998). A Social Network Approach to Estimating Seroprevalence in the United States, Social Networks, 20, 23–50
Killworth, P. D., McCarty, C., Bernard, H. R., Shelley, G. A., and Johnsen, E. C. (1998). Estimation of Seroprevalence, Rape and Homelessness in the United States Using a Social Network Approach, Evaluation Review, 22, 289–308
Laga, I., Bao, L., and Niu, X. (2021). Thirty Years of the Network Scale-up Method, Journal of the American Statistical Association, 116:535, 1548–1559
Examples
# Analyze an example ard data set using the killworth function
data(example_data)
ard = example_data$ard
subpop_sizes = example_data$subpop_sizes
N = example_data$N
mle.est = killworth(ard,
known_sizes = subpop_sizes[c(1, 2, 4)],
known_ind = c(1, 2, 4),
N = N, model = "MLE")
pimle.est = killworth(ard,
known_sizes = subpop_sizes[c(1, 2, 4)],
known_ind = c(1, 2, 4),
N = N, model = "PIMLE")
## Compare estimates with the truth
plot(mle.est$degrees, example_data$degrees)
data.frame(true = subpop_sizes[c(3, 5)],
mle = mle.est$sizes,
pimle = pimle.est$sizes)