| bic.netEst.undir {netgsa} | R Documentation |
Bayesian information criterion to select the tuning parameters for netEst.undir
Description
This function uses the Bayesian information criterion to select the optimal tuning parameters needed in netEst.undir.
Usage
bic.netEst.undir(x, zero = NULL, one = NULL, lambda, rho = NULL, weight = NULL,
eta = 0, verbose = FALSE, eps = 1e-08)
Arguments
x |
The |
zero |
(Optional) indices of entries of the matrix to be constrained to be zero. The input should be a matrix of |
one |
(Optional) indices of entries of the matrix to be kept regardless of the regularization parameter for lasso. The input is similar to that of |
lambda |
(Non-negative) user-supplied lambda sequence. |
rho |
(Non-negative) numeric scalar representing the regularization parameter for estimating the weights in the inverse covariance matrix. This is the same as |
weight |
(Optional) whether to add penalty to known edges. If NULL (default), then the known edges are assumed to be true. If nonzero, then a penalty equal to |
eta |
(Non-negative) a small constant added to the diagonal of the empirical covariance matrix of |
verbose |
Whether to print out information as estimation proceeds. Default= |
eps |
Numeric scalar |
Details
Let \hat\Sigma represent the empirical covariance matrix of data x. For a given \lambda, denote the estimated inverse covariance matrix by \hat\Omega_{\lambda}. the Bayesian information criterion (BIC) is defined as
trace(\hat\Sigma \hat\Omega_{\lambda}) - \log \det (\hat\Omega_{\lambda}) + \frac{\log n}{n} \cdot df,
where df represents the degrees of freedom in the selected model and can be estimated via the number of edges in \hat\Omega_{\lambda}. The optimal tuning parameter is selected as the one that minimizes the BIC over the range of lambda.
Note when the penalty parameter lambda is too large, the estimated adjacency matrix may be zero. The function will thus return a warning message.
Value
lambda |
The values of |
weight |
The values of |
BIC |
If |
df |
The degrees of freedom corresponding to each BIC. |
Author(s)
Jing Ma
References
Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with incomplete network information. Bioinformatics 32(20):165–3174. doi:10.1093/bioinformatics/btw410