dlyap {netcontrol} | R Documentation |
Discrete Lyapunov Equation Solver
Description
Computes the solution of AXA^T - X + W = 0
using the Barraud 1977 approach, adapted from Datta 2004.
This implementation is equivalent to the Matlab implementation of dylap.
Usage
dlyap(A, W)
Arguments
A |
|
W |
|
Value
The solution to the above Lyapunov equation.
References
Barraud A (1977). “A numerical algorithm to solve \$ A^TXA - X = Q\$.” IEEE Transactions on Automatic Control, 22(5), 883–885. ISSN 0018-9286, doi: 10/fr9gs7, http://ieeexplore.ieee.org/document/1101604/.
Datta BN (2004). Numerical methods for linear control systems: design and analysis. Elsevier Academic Press, Amsterdam ; Boston. ISBN 978-0-12-203590-6.
Examples
A = matrix(c(0,-3,-2,2,-2,1,-1,2,-1), 3,3)
C = matrix(c(-2,-8,11,2,-6,13,-3,-5,-2), 3,3)
X = dlyap(t(A), C)
print(sum(abs(A %*% X %*% t(A) - X + C)))
[Package netcontrol version 0.1 Index]