control_scheme_DLI_freestate {netcontrol} | R Documentation |
Discrete Linear Time-Invariant Free Final State Classic Control Scheme
Description
Given a system dynamics A
, control input matrix B
, final state weighting matrix S
,
intermediate state weighting matrix sequence Q_seq
, and cost matrix sequence R_seq
,
calculates the Kalman gain sequence to minimize the LQR by time t_max
.
See section 2.2 of (Lewis et al. 2012) for details.
Usage
control_scheme_DLI_freestate(t_max, A, B, S, Q_seq, R_seq)
Arguments
t_max |
Required. An integer total number of time points to determine the trajectory over |
A |
Required. A |
B |
Required. A |
S |
A |
Q_seq |
A list of |
R_seq |
A list of |
Value
A list containing an entry labeled gain_seq
containing either 1 or t_max - 1
Kalman gain matrices and an entry labeled cost_func
which contains a LQR function.
References
Lewis FL, Vrabie DL, Syrmos VL (2012). Optimal Control, 3rd ed edition. Wiley, Hoboken. ISBN 978-0-470-63349-6.
Examples
A = matrix(c(0,-3,-2,2,-2,1,-1,2,-1), 3,3)
#Normalize rows to sum to 1
A = solve(diag(rowSums(A))) %*% A
B = S = Q_seq = R_seq = diag(3)
CS = control_scheme_DLI_freestate(100, A, B, S, Q_seq, R_seq)