control_gramian {netcontrol} | R Documentation |
Controllability Gramian
Description
Compute the (infinite time) controllability Gramian for the discrete linear time invariant system described by x(t+1) = Ax(t) + Bu(t)
.
The infinite time controllability Gramian is the solution to the discrete Lyapunov equation AWA^\prime-W = -BB^\prime
, while the finite time Gramian for time T
is
W_t = \sum_{t = 0}^T A^tBB^\prime(A^\prime)^t
Usage
control_gramian(A, B, t = NA)
Arguments
A |
|
B |
|
t |
Either NA for infinite time Gramian, or a positive non-zero integer. Defaults to NA. |
Value
The infinite time or finite time controllability Gramian
Examples
A = matrix(c(0,-3,-2,2,-2,1,-1,2,-1), 3,3)
B = diag(3)
#Infinite time Gramian
W_inf = control_gramian(A, B)
#4 time Gramian
W_4 = control_gramian(A,B,4)
[Package netcontrol version 0.1 Index]