uni {netcmc} | R Documentation |
A function that generates samples for a univariate fixed effects model.
Description
This function generates samples for a univariate fixed effects model, which is given by
Y_{i_s}|\mu_{i_s} \sim f(y_{i_s}| \mu_{i_s}, \sigma_{e}^{2}) ~~~ i=1,\ldots, N_{s},~s=1,\ldots,S ,
g(\mu_{i_s}) = \boldsymbol{x}^\top_{i_s} \boldsymbol{\beta},
\boldsymbol{\beta} \sim \textrm{N}(\boldsymbol{0}, \alpha\boldsymbol{I}),
\sigma_{e}^{2} \sim \textrm{Inverse-Gamma}(\alpha_{3}, \xi_{3}).
The covariates for the i
th individual in the s
th spatial unit or other grouping are included in a p \times 1
vector \boldsymbol{x}_{i_s}
. The corresponding p \times 1
vector of fixed effect parameters are denoted by \boldsymbol{\beta}
, which has an assumed multivariate Gaussian prior with mean \boldsymbol{0}
and diagonal covariance matrix \alpha\boldsymbol{I}
that can be chosen by the user. A conjugate Inverse-Gamma prior is specified for \sigma_{e}^{2}
, and the corresponding hyperparamaterers (\alpha_{3}
, \xi_{3}
) can be chosen by the user.
The exact specification of each of the likelihoods (binomial, Gaussian, and Poisson) are given below:
\textrm{Binomial:} ~ Y_{i_s} \sim \textrm{Binomial}(n_{i_s}, \theta_{i_s}) ~ \textrm{and} ~ g(\mu_{i_s}) = \textrm{ln}(\theta_{i_s} / (1 - \theta_{i_s})),
\textrm{Gaussian:} ~ Y_{i_s} \sim \textrm{N}(\mu_{i_s}, \sigma_{e}^{2}) ~ \textrm{and} ~ g(\mu_{i_s}) = \mu_{i_s},
\textrm{Poisson:} ~ Y_{i_s} \sim \textrm{Poisson}(\mu_{i_s}) ~ \textrm{and} ~ g(\mu_{i_s}) = \textrm{ln}(\mu_{i_s}).
Usage
uni(formula, data, trials, family, numberOfSamples = 10, burnin = 0, thin = 1, seed = 1,
trueBeta = NULL, trueSigmaSquaredE = NULL, covarianceBetaPrior = 10^5,
a3 = 0.001, b3 = 0.001)
Arguments
formula |
A formula for the covariate part of the model using a similar syntax to that used in the lm() function. |
data |
An optional data.frame containing the variables in the formula. |
trials |
A vector the same length as the response containing the total number of trials
|
family |
The data likelihood model that must be “gaussian" , “poisson" or “binomial". |
numberOfSamples |
The number of samples to generate pre-thin. |
burnin |
The number of MCMC samples to discard as the burn-in period. |
thin |
The value by which to thin |
seed |
A seed for the MCMC algorithm. |
trueBeta |
If available, the true values of the |
trueSigmaSquaredE |
If available, the true value of |
covarianceBetaPrior |
A scalar prior |
a3 |
The shape parameter for the Inverse-Gamma distribution
|
b3 |
The scale parameter for the Inverse-Gamma distribution
|
Value
call |
The matched call. |
y |
The response used. |
X |
The design matrix used. |
standardizedX |
The standardized design matrix used. |
samples |
The matrix of simulated samples from the posterior distribution of each parameter in the model (excluding random effects). |
betaSamples |
The matrix of simulated samples from the posterior
distribution of |
sigmaSquaredESamples |
The vector of simulated samples from the posterior
distribution of |
acceptanceRates |
The acceptance rates of parameters in the model from the MCMC sampling scheme. |
timeTaken |
The time taken for the model to run. |
burnin |
The number of MCMC samples to discard as the burn-in period. |
thin |
The value by which to thin |
DBar |
DBar for the model. |
posteriorDeviance |
The posterior deviance for the model. |
posteriorLogLikelihood |
The posterior log likelihood for the model. |
pd |
The number of effective parameters in the model. |
DIC |
The DIC for the model. |
Author(s)
George Gerogiannis
Examples
#################################################
#### Run the model on simulated data
#################################################
#### Generate the covariates and response data
observations <- 100
X <- matrix(rnorm(2 * observations), ncol = 2)
colnames(X) <- c("x1", "x2")
beta <- c(2, -2, 2)
logit <- cbind(rep(1, observations), X) %*% beta
prob <- exp(logit) / (1 + exp(logit))
trials <- rep(50, observations)
Y <- rbinom(n = observations, size = trials, prob = prob)
data <- data.frame(cbind(Y, X))
#### Run the model
formula <- Y ~ x1 + x2
## Not run: model <- uni(formula = formula, data = data, family="binomial",
trials = trials, numberOfSamples = 10000,
burnin = 10000, thin = 10, seed = 1)
## End(Not run)