getAdjacencyMatrix {netcmc} | R Documentation |
A function that extracts valuable properties from a raw social network.
Description
This function transforms a network, which is a data.frame type in a specified format, in to a resultant n
by n
adjacency matrix, where a_{ij}
= 0 if vertex i
and j
(i \neq j
) are not adjacent i.e. vertex i
and j
are not the head/tail of an edge e
and a_{ij}
= 1 if vertex i
and j
(i \neq j
) are adjacent i.e. vertex i
and j
are the head/tail of an edge e
. a_{ij}
= 0 when i = j
.
Usage
getAdjacencyMatrix(rawNetwork)
Arguments
rawNetwork |
The data.frame which encodes information about the network. The dimensions of the matrix are |
Value
adjacencyMatrix |
The resultant adjaceny matrix for the rawNetwork data.frame. |
nonnominators |
The individuals in the social network who are nominees of at least one other individual but were not in the set of individuals who did the nominating. |
vertexNoOutdegrees |
The individuals in the social network that have an outdegree of 0. |
vertexNoIndegrees |
The individuals in the social network that have an indegree of 0. |
vertexIsolates |
The individuals in the social network that have an outdegree and indegree of 0. |
Author(s)
George Gerogiannis
Examples
rawNetwork = matrix(NA, 4, 3)
rawNetwork = as.data.frame(rawNetwork)
colnames(rawNetwork)[1] = "labels"
rawNetwork[, 1] = c("A", "B", "C", "D")
rawNetwork[, 2] = c(0, "C", "D", 0)
rawNetwork[, 3] = c("B", 0, "A", "C")
getAdjacencyMatrix(rawNetwork)
rawNetwork = matrix(NA, 4, 3)
rawNetwork = as.data.frame(rawNetwork)
colnames(rawNetwork)[2] = "labels"
rawNetwork[, 1] = c(NA, "Charlie", "David", 0)
rawNetwork[, 2] = c("Alistar", "Bob", "Charlie", "David")
rawNetwork[, 3] = c("Bob", NA, "Alistar", "Charlie")
getAdjacencyMatrix(rawNetwork)
rawNetwork = matrix(NA, 4, 3)
rawNetwork = as.data.frame(rawNetwork)
colnames(rawNetwork)[1] = "labels"
rawNetwork[, 1] = c(245, 344, 234, 104)
rawNetwork[, 2] = c(NA, 234, 104, NA)
rawNetwork[, 3] = c(344, 0, 245, 234)
getAdjacencyMatrix(rawNetwork)
rawNetwork = matrix(NA, 4, 3)
rawNetwork = as.data.frame(rawNetwork)
colnames(rawNetwork)[1] = "labels"
rawNetwork[, 1] = c(245, 344, 234, 104)
rawNetwork[, 2] = c(32, 234, 104, 0)
rawNetwork[, 3] = c(344, 20, 245, 234)
getAdjacencyMatrix(rawNetwork)
rawNetwork = matrix(NA, 4, 3)
rawNetwork = as.data.frame(rawNetwork)
colnames(rawNetwork)[1] = "labels"
rawNetwork[, 1] = c("Alistar", "Bob", "Charlie", "David")
rawNetwork[, 2] = c(NA, "Charlie", "David", 0)
rawNetwork[, 3] = c("Bob", "Blaine", "Alistar", "Charlie")
getAdjacencyMatrix(rawNetwork)
rawNetwork = matrix(NA, 4, 3)
rawNetwork = as.data.frame(rawNetwork)
colnames(rawNetwork)[1] = "labels"
rawNetwork[, 1] = c("Alistar", "Bob", "Charlie", "David")
rawNetwork[, 2] = c(0, "Charlie", 0, 0)
rawNetwork[, 3] = c("Bob", "Blaine", "Alistar", 0)
getAdjacencyMatrix(rawNetwork)
rawNetwork = matrix(NA, 4, 3)
rawNetwork = as.data.frame(rawNetwork)
colnames(rawNetwork)[1] = "labels"
rawNetwork[, 1] = c(245, 344, 234, 104)
rawNetwork[, 2] = c(32, 0, 104, 0)
rawNetwork[, 3] = c(34, 0, 245, 234)
getAdjacencyMatrix(rawNetwork)