train_summary {nestedcv} | R Documentation |
Summarise performance on outer training folds
Description
Calculates performance metrics on outer training folds: confusion matrix, accuracy and balanced accuracy for classification; ROC AUC for binary classification; RMSE, R^2 and mean absolute error (MAE) for regression.
Usage
train_summary(x)
Arguments
x |
a |
Details
Note: the argument outer_train_predict
must be set to TRUE
in
the original call to either nestcv.glmnet
, nestcv.train
or outercv
.
Value
Returns performance metrics from outer training folds, see predSummary
See Also
Examples
data(iris)
x <- iris[, 1:4]
y <- iris[, 5]
fit <- nestcv.glmnet(y, x,
family = "multinomial",
alpha = 1,
outer_train_predict = TRUE,
n_outer_folds = 3)
summary(fit)
innercv_summary(fit)
train_summary(fit)
fit2 <- nestcv.train(y, x,
model="svm",
outer_train_predict = TRUE,
n_outer_folds = 3,
cv.cores = 2)
summary(fit2)
innercv_summary(fit2)
train_summary(fit2)
[Package nestedcv version 0.7.9 Index]