supervisedPCA {nestedcv} | R Documentation |
Supervised PCA plot
Description
Performs supervised principle component analysis (PCA) after filtering dataset to help determine whether filtering has been useful for separating samples according to the outcome variable.
Usage
supervisedPCA(y, x, filterFUN = NULL, filter_options = NULL, plot = TRUE, ...)
Arguments
y |
Response vector |
x |
Matrix of predictors |
filterFUN |
Filter function, e.g. ttest_filter or relieff_filter.
Any function can be provided and is passed |
filter_options |
List of additional arguments passed to the filter
function specified by |
plot |
Logical whether to plot a ggplot2 object or return the PC scores |
... |
Optional arguments passed to |
Value
If plot=TRUE
returns a ggplot2 plot, otherwise returns the
principle component scores.
[Package nestedcv version 0.7.9 Index]