pred_nestcv_glmnet {nestedcv} | R Documentation |
Prediction wrappers to use fastshap with nestedcv
Description
Prediction wrapper functions to enable the use of the fastshap
package for
generating SHAP values from nestedcv
trained models.
Usage
pred_nestcv_glmnet(x, newdata)
pred_nestcv_glmnet_class1(x, newdata)
pred_nestcv_glmnet_class2(x, newdata)
pred_nestcv_glmnet_class3(x, newdata)
pred_train(x, newdata)
pred_train_class1(x, newdata)
pred_train_class2(x, newdata)
pred_train_class3(x, newdata)
pred_SuperLearner(x, newdata)
Arguments
x |
a |
newdata |
a matrix of new data |
Details
These prediction wrapper functions are designed to be used with the
fastshap
package. The functions pred_nestcv_glmnet
and pred_train
work
for nestcv.glmnet
and nestcv.train
models respectively for either binary
classification or regression.
For multiclass classification use pred_nestcv_glmnet_class1
, 2
and 3
for the first 3 classes. Similarly pred_train_class1
etc for nestcv.train
objects. These functions can be inspected and easily modified to analyse
further classes.
Value
prediction wrapper function designed for use with
fastshap::explain()
Examples
library(fastshap)
# Boston housing dataset
library(mlbench)
data(BostonHousing2)
dat <- BostonHousing2
y <- dat$cmedv
x <- subset(dat, select = -c(cmedv, medv, town, chas))
# Fit a glmnet model using nested CV
# Only 3 outer CV folds and 1 alpha value for speed
fit <- nestcv.glmnet(y, x, family = "gaussian", n_outer_folds = 3, alphaSet = 1)
# Generate SHAP values using fastshap::explain
# Only using 5 repeats here for speed, but recommend higher values of nsim
sh <- explain(fit, X=x, pred_wrapper = pred_nestcv_glmnet, nsim = 1)
# Plot overall variable importance
plot_shap_bar(sh, x)
# Plot beeswarm plot
plot_shap_beeswarm(sh, x, size = 1)
[Package nestedcv version 0.7.9 Index]