stanf_msnburr {neodistr} | R Documentation |
Stan function of MSNBurr Distribution
Description
Stan code of MSNBurr distribution for custom distribution in stan
Usage
stanf_msnburr(vectorize = TRUE, rng = TRUE)
Arguments
vectorize |
logical; if TRUE, Vectorize Stan code of MSNBurr distribution are given The default value of this parameter is TRUE |
rng |
logical; if TRUE, Stan code of quantile and random number generation of MSNBurr distribution are given The default value of this parameter is TRUE |
Details
MSNBurr Distribution has density:
f(y |\mu,\sigma,\alpha)=\frac{\omega}{\sigma}\exp{\left(-\omega{\left(\frac{y-\mu}{\sigma}\right)}\right)}{{\left(1+\frac{\exp{\left(-\omega{(\frac{y-\mu}{\sigma})}\right)}}{\alpha}\right)}^{-(\alpha+1)}}
where -\infty < y < \infty, -\infty < \mu< \infty, \sigma>0, \alpha>0,
\omega = \frac{1}{\sqrt{2\pi}} {\left(1+\frac{1}{\alpha}\right)^{\alpha+1}}
This function gives stan code of log density, cumulative distribution, log of cumulatif distribution, log complementary cumulative distribution, quantile, random number of MSNBurr distribution
Value
msnburr_lpdf
gives the log of density, msnburr_cdf
gives the distribution
function, msnburr_lcdf
gives the log of distribution function, msnburr_lccdf
gives the complement of log ditribution function (1-msnburr_lcdf),
and msnburr_rng
generates
random deviates.
Author(s)
Achmad Syahrul Choir and Nur Iriawan
References
Iriawan, N. (2000). Computationally Intensive Approaches to Inference in Neo-Normal Linear Models. Curtin University of Technology. Choir, A. S. (2020). The New Neo-Normal DDistributions and their Properties. Disertation. Institut Teknologi Sepuluh Nopember.
Examples
library (neodistr)
library(rstan)
#inputting data
set.seed(136)
dt <- neodistr::rmsnburr(100,0,1,0.5) # random generating MSNBurr data
dataf <- list(
n = 100,
y = dt
)
#### not vector
##Calling the function of the neo-normal distribution that is available in the package.
func_code<-paste(c("functions{",neodistr::stanf_msnburr(vectorize=FALSE),"}"),collapse="\n")
#define stan model code
model<-"
data {
int<lower=1> n;
vector[n] y;
}
parameters {
real mu;
real <lower=0> sigma;
real <lower=0> alpha;
}
model {
for(i in 1:n){
y[i]~msnburr(mu,sigma,alpha);
}
mu~cauchy(0,1);
sigma~cauchy(0,2.5);
alpha~cauchy(0,1);
}
"
#merge stan model code and selected neo-normal stan function
fit_code<-paste(c(func_code,model,"\n"),collapse="\n")
# Create the model using stan function
fit1 <- stan(
model_code = fit_code, # Stan program
data = dataf, # named list of data
chains = 2, # number of Markov chains
#warmup = 5000, # number of warmup iterations per chain
iter = 10000, # total number of iterations per chain
cores = 2 # number of cores (could use one per chain)
)
# Showing the estimation results of the parameters that were executed using the Stan file
print(fit1, pars=c("mu", "sigma", "alpha", "lp__"), probs=c(.025,.5,.975))
# Vector
##Calling the function of the neo-normal distribution that is available in the package.
func_code_vector<-paste(c("functions{",neodistr::stanf_msnburr(vectorize=TRUE),"}"),collapse="\n")
# define stan model as vector
model_vector<-"
data {
int<lower=1> n;
vector[n] y;
}
parameters {
real mu;
real <lower=0> sigma;
real <lower=0> alpha;
}
model {
y~msnburr(rep_vector(mu,n),sigma,alpha);
mu~cauchy(0,1);
sigma~cauchy(0,2.5);
alpha~cauchy(0,1);
}
"
#merge stan model code and selected neo-normal stan function
fit_code_vector<-paste(c(func_code_vector,model_vector,"\n"),collapse="\n")
# Create the model using stan function
fit2 <- stan(
model_code = fit_code_vector, # Stan program
data = dataf, # named list of data
chains = 2, # number of Markov chains
#warmup = 5000, # number of warmup iterations per chain
iter = 10000, # total number of iterations per chain
cores = 2 # number of cores (could use one per chain)
)
# Showing the estimation results of the parameters that were executed using the Stan file
print(fit2, pars=c("mu", "sigma", "alpha", "lp__"), probs=c(.025,.5,.975))