msnburr {neodistr} | R Documentation |
MSNBurr Distribution
Description
To calculate density function, distribution funcion, quantile function, and build data from random generator function for the MSNBurr Distribution.
Usage
dmsnburr(x, mu = 0, sigma = 1, alpha = 1, log = FALSE)
pmsnburr(q, mu = 0, sigma = 1, alpha = 1, lower.tail = TRUE, log.p = FALSE)
qmsnburr(p, mu = 0, sigma = 1, alpha = 1, lower.tail = TRUE, log.p = FALSE)
rmsnburr(n, mu = 0, sigma = 1, alpha = 1)
Arguments
x , q |
vector of quantiles. |
mu |
a location parameter. |
sigma |
a scale parameter. |
alpha |
a shape parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p) The default value of this parameter is FALSE. |
lower.tail |
logical;if TRUE (default), probabilities are
|
p |
vectors of probabilities. |
n |
number of observations. |
Details
MSNBurr Distribution
The MSNBurr distribution with parameters \mu
, \sigma
,and \alpha
has density:
f(x |\mu,\sigma,\alpha)=\frac{\omega}{\sigma}\exp{\left(\omega{\left(\frac{x-\mu}{\sigma}\right)}\right)}{{\left(1+\frac{\exp{\left(\omega{(\frac{x-\mu}{\sigma})}\right)}}{\alpha}\right)}^{-(\alpha+1)}}
where -\infty < x < \infty, -\infty < \mu< \infty, \sigma>0, \alpha>0,
\omega = \frac{1}{\sqrt{2\pi}} {\left(1+\frac{1}{\alpha}\right)^{\alpha+1}}
Value
dmsnburr
gives the density , pmsnburr
gives the distribution function,
qmsnburr
gives quantiles function, rmsnburr
generates random numbers.
Author(s)
Achmad Syahrul Choir and Nur Iriawan
References
Iriawan, N. (2000). Computationally Intensive Approaches to Inference in Neo-Normal Linear Models. Curtin University of Technology.
Choir, A. S. (2020). The New Neo-Normal Distributions and their Properties. Disertation. Institut Teknologi Sepuluh Nopember.
Examples
library("neodistr")
dmsnburr(0, mu=0, sigma=1, alpha=0.1)
plot(function(x) dmsnburr(x, alpha=0.1), -20, 3,
main = "Left Skew MSNBurr Density ",ylab="density")
pmsnburr(7, mu=0, sigma=1, alpha=1)
qmsnburr(0.6, mu=0, sigma=1, alpha=1)
r<- rmsnburr(10000, mu=0, sigma=1, alpha=1)
head(r)
hist(r, xlab = 'MSNBurr random number', ylab = 'Frequency',
main = 'Distribution of MSNBurr Random Number ')