gmsnburr {neodistr} | R Documentation |
GMSNBurr distribution
Description
To calculate density function, distribution funcion, quantile function, and build data from random generator function for the GMSNBurr Distribution.
Usage
dgmsnburr(x, mu = 0, sigma = 1, alpha = 1, beta = 1, log = FALSE)
pgmsnburr(
q,
mu = 0,
sigma = 1,
alpha = 1,
beta = 1,
lower.tail = TRUE,
log.p = FALSE
)
qgmsnburr(
p,
mu = 0,
sigma = 1,
alpha = 1,
beta = 1,
lower.tail = TRUE,
log.p = FALSE
)
rgmsnburr(n, mu = 0, sigma = 1, alpha = 1, beta = 1)
Arguments
x , q |
vector of quantiles. |
mu |
a location parameter. |
sigma |
a scale parameter. |
alpha |
a shape parameter. |
beta |
a shape parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p) The default value of this parameter is FALSE. |
lower.tail |
logical;if TRUE (default), probabilities are
|
p |
vectors of probabilities. |
n |
number of observations. |
Details
GMSNBurr Distribution
The GMSNBurr distribution with parameters \mu
, \sigma
,\alpha
, and \beta
has density:
f(x |\mu,\sigma,\alpha,\beta) = {\frac{\omega}{{B(\alpha,\beta)}\sigma}}{{\left(\frac{\beta}{\alpha}\right)}^\beta} {{\exp{\left(-\beta \omega {\left(\frac{x-\mu}{\sigma}\right)}\right)} {{\left(1+{\frac{\beta}{\alpha}} {\exp{\left(-\omega {\left(\frac{x-\mu}{\sigma}\right)}\right)}}\right)}^{-(\alpha+\beta)}}}}
where -\infty<x<\infty, -\infty<\mu<\infty, \sigma>0, \alpha>0, \beta>0
and \omega = {\frac{B(\alpha,\beta)}{\sqrt{2\pi}}}{{\left(1+{\frac{\beta}{\alpha}}\right)}^{\alpha+\beta}}{\left(\frac{\beta}{\alpha}\right)}^{-\beta}
Value
dgmsnburr
gives the density , pgmasnburr
gives the distribution function,
qgmsnburr
gives quantiles function, rgmsnburr
generates random numbers.
Author(s)
Achmad Syahrul Choir
References
Choir, A. S. (2020). The New Neo-Normal Distributions and their Properties. Disertation. Institut Teknologi Sepuluh Nopember.
Iriawan, N. (2000). Computationally Intensive Approaches to Inference in Neo-Normal Linear Models. Curtin University of Technology.
Examples
library("neodistr")
dgmsnburr(0, mu=0, sigma=1, alpha=1,beta=1)
pgmsnburr(4, mu=0, sigma=1, alpha=1, beta=1)
qgmsnburr(0.4, mu=0, sigma=1, alpha=1, beta=1)
r=rgmsnburr(10000, mu=0, sigma=1, alpha=1, beta=1)
head(r)
hist(r, xlab = 'GMSNBurr random number', ylab = 'Frequency',
main = 'Distribution of GMSNBurr Random Number ')