bnrm {neodistr}R Documentation

Neo-normal model using brms

Description

Neo-normal model using brms

Usage

bnrm(
  formula,
  data,
  family = msnburr(),
  prior = NULL,
  data2 = NULL,
  sample_prior = "no",
  knots = NULL,
  drop_unused_levels = TRUE,
  stanvars = NULL,
  fit = NA,
  save_pars = getOption("brms.save_pars", NULL),
  init = NULL,
  chains = 4,
  iter = 2000,
  warmup = floor(iter/2),
  thin = 1,
  cores = getOption("mc.cores", 1),
  threads = getOption("brms.threads", NULL),
  opencl = getOption("brms.opencl", NULL),
  normalize = getOption("brms.normalize", TRUE),
  control = list(adapt_delta = 0.9),
  algorithm = getOption("brms.algorithm", "sampling"),
  backend = getOption("brms.backend", "rstan"),
  future = getOption("future", FALSE),
  silent = 1,
  seed = NA,
  save_model = NULL,
  stan_model_args = list(),
  file = NULL,
  file_compress = TRUE,
  file_refit = getOption("brms.file_refit", "never"),
  empty = FALSE,
  rename = TRUE,
  ...
)

Arguments

formula

An object of class formula, brmsformula, or mvbrmsformula (or one that can be coerced to that classes): A symbolic description of the model to be fitted. The details of model specification are explained in brmsformula.

data

An object of class data.frame (or one that can be coerced to that class) containing data of all variables used in the model.

family

the neo-normal distribution as response in regression:msnburr(),msnburr2a(),gmsnburr(),jfst() default argument in family is vectorize=TRUE. if not vectorize, give argument vectorize=FALSE, example:msnburr(vectorize=FALSE)

prior

One or more brmsprior objects created by set_prior or related functions and combined using the c method or the + operator. See also default_prior for more help.

data2

A named list of objects containing data, which cannot be passed via argument data. Required for some objects used in autocorrelation structures to specify dependency structures as well as for within-group covariance matrices.

sample_prior

Indicate if draws from priors should be drawn additionally to the posterior draws. Options are "no" (the default), "yes", and "only". Among others, these draws can be used to calculate Bayes factors for point hypotheses via hypothesis. Please note that improper priors are not sampled, including the default improper priors used by brm. See set_prior on how to set (proper) priors. Please also note that prior draws for the overall intercept are not obtained by default for technical reasons. See brmsformula how to obtain prior draws for the intercept. If sample_prior is set to "only", draws are drawn solely from the priors ignoring the likelihood, which allows among others to generate draws from the prior predictive distribution. In this case, all parameters must have proper priors.

knots

Optional list containing user specified knot values to be used for basis construction of smoothing terms. See gamm for more details.

drop_unused_levels

Should unused factors levels in the data be dropped? Defaults to TRUE.

stanvars

An optional stanvars object generated by function stanvar to define additional variables for use in Stan's program blocks.

fit

An instance of S3 class brmsfit derived from a previous fit; defaults to NA. If fit is of class brmsfit, the compiled model associated with the fitted result is re-used and all arguments modifying the model code or data are ignored. It is not recommended to use this argument directly, but to call the update method, instead.

save_pars

An object generated by save_pars controlling which parameters should be saved in the model. The argument has no impact on the model fitting itself.

init

Initial values for the sampler. If NULL (the default) or "random", Stan will randomly generate initial values for parameters in a reasonable range. If 0, all parameters are initialized to zero on the unconstrained space. This option is sometimes useful for certain families, as it happens that default random initial values cause draws to be essentially constant. Generally, setting init = 0 is worth a try, if chains do not initialize or behave well. Alternatively, init can be a list of lists containing the initial values, or a function (or function name) generating initial values. The latter options are mainly implemented for internal testing but are available to users if necessary. If specifying initial values using a list or a function then currently the parameter names must correspond to the names used in the generated Stan code (not the names used in R). For more details on specifying initial values you can consult the documentation of the selected backend.

chains

Number of Markov chains (defaults to 4).

iter

Number of total iterations per chain (including warmup; defaults to 2000).

warmup

A positive integer specifying number of warmup (aka burnin) iterations. This also specifies the number of iterations used for stepsize adaptation, so warmup draws should not be used for inference. The number of warmup should not be larger than iter and the default is iter/2.

thin

Thinning rate. Must be a positive integer. Set thin > 1 to save memory and computation time if iter is large.

cores

Number of cores to use when executing the chains in parallel, which defaults to 1 but we recommend setting the mc.cores option to be as many processors as the hardware and RAM allow (up to the number of chains). For non-Windows OS in non-interactive R sessions, forking is used instead of PSOCK clusters.

threads

Number of threads to use in within-chain parallelization. For more control over the threading process, threads may also be a brmsthreads object created by threading. Within-chain parallelization is experimental! We recommend its use only if you are experienced with Stan's reduce_sum function and have a slow running model that cannot be sped up by any other means. Can be set globally for the current R session via the "brms.threads" option.

opencl

The platform and device IDs of the OpenCL device to use for fitting using GPU support. If you don't know the IDs of your OpenCL device, c(0,0) is most likely what you need. For more details, see opencl. Can be set globally for the current R session via the "brms.opencl" option

normalize

Logical. Indicates whether normalization constants should be included in the Stan code (defaults to TRUE). Setting it to FALSE requires Stan version >= 2.25 to work. If FALSE, sampling efficiency may be increased but some post processing functions such as bridge_sampler will not be available. Can be controlled globally for the current R session via the 'brms.normalize' option.

control

A named list of parameters to control the sampler's behavior. It defaults to NULL so all the default values are used. The most important control parameters are discussed in the 'Details' section below. For a comprehensive overview see stan.

algorithm

Character string naming the estimation approach to use. Options are "sampling" for MCMC (the default), "meanfield" for variational inference with independent normal distributions, "fullrank" for variational inference with a multivariate normal distribution, or "fixed_param" for sampling from fixed parameter values. Can be set globally for the current R session via the "brms.algorithm" option .

backend

Character string naming the package to use as the backend for fitting the Stan model. Options are "rstan" (the default) or "cmdstanr". Can be set globally for the current R session via the "brms.backend" option . Details on the rstan and cmdstanr packages are available at https://mc-stan.org/rstan/ and https://mc-stan.org/cmdstanr/, respectively. Additionally a "mock" backend is available to make testing brms and packages that depend on it easier. The "mock" backend does not actually do any fitting, it only checks the generated Stan code for correctness and then returns whatever is passed in an additional mock_fit argument as the result of the fit.

future

Logical; If TRUE, the future package is used for parallel execution of the chains and argument cores will be ignored. Can be set globally for the current R session via the "future" option. The execution type is controlled via plan (see the examples section below).

silent

Verbosity level between 0 and 2. If 1 (the default), most of the informational messages of compiler and sampler are suppressed. If 2, even more messages are suppressed. The actual sampling progress is still printed. Set refresh = 0 to turn this off as well. If using backend = "rstan" you can also set open_progress = FALSE to prevent opening additional progress bars.

seed

The seed for random number generation to make results reproducible. If NA (the default), Stan will set the seed randomly.

save_model

Either NULL or a character string. In the latter case, the model's Stan code is saved via cat in a text file named after the string supplied in save_model.

stan_model_args

A list of further arguments passed to rstan::stan_model for backend = "rstan" or to cmdstanr::cmdstan_model for backend = "cmdstanr", which allows to change how models are compiled.

file

Either NULL or a character string. In the latter case, the fitted model object is saved via saveRDS in a file named after the string supplied in file. The .rds extension is added automatically. If the file already exists, brm will load and return the saved model object instead of refitting the model. Unless you specify the file_refit argument as well, the existing files won't be overwritten, you have to manually remove the file in order to refit and save the model under an existing file name. The file name is stored in the brmsfit object for later usage.

file_compress

Logical or a character string, specifying one of the compression algorithms supported by saveRDS. If the file argument is provided, this compression will be used when saving the fitted model object.

file_refit

Modifies when the fit stored via the file argument is re-used. Can be set globally for the current R session via the "brms.file_refit" option . For "never" (default) the fit is always loaded if it exists and fitting is skipped. For "always" the model is always refitted. If set to "on_change", brms will refit the model if model, data or algorithm as passed to Stan differ from what is stored in the file. This also covers changes in priors, sample_prior, stanvars, covariance structure, etc. If you believe there was a false positive, you can use brmsfit_needs_refit to see why refit is deemed necessary. Refit will not be triggered for changes in additional parameters of the fit (e.g., initial values, number of iterations, control arguments, ...). A known limitation is that a refit will be triggered if within-chain parallelization is switched on/off.

empty

Logical. If TRUE, the Stan model is not created and compiled and the corresponding 'fit' slot of the brmsfit object will be empty. This is useful if you have estimated a brms-created Stan model outside of brms and want to feed it back into the package.

rename

For internal use only.

...

Further arguments passed to Stan. For backend = "rstan" the arguments are passed to sampling or vb. For backend = "cmdstanr" the arguments are passed to the cmdstanr::sample or cmdstanr::variational method.

Details

Fit a neo-normal model that using brm function in brms package.All arguments in this functions follow arguments of brm function, except family

Value

An object of class brmsfit, which contains the posterior draws along with many other useful information about the model. Use methods(class = "brmsfit") for an overview on available methods.

Author(s)

Achmad Syahrul Choir

References

Buerkner,P-C (2017). brms: An R Package for Bayesian Multilevel Models Using Stan. Journal of Statistical Software, 80(1), 1-28. doi:10.18637/jss.v080.i01

Choir, A. S. (2020). The New Neo-Normal Distributions and their Properties. Disertation. Institut Teknologi Sepuluh Nopember.

Iriawan, N. (2000). Computationally Intensive Approaches to Inference in Neo-Normal Linear Models. Curtin University of Technology.

Examples


  library(neodistr)
  x<-runif(100)
  e<-rmsnburr(100,0,1,0.8)
  y<-0.5+0.8*x+e
  data<-data.frame(y,x)
  fit <- bnrm(
    y ~ x, data = data,
    family = msnburr())
  summary(fit)
  pp <- posterior_predict(fit)
  ppe <- posterior_epred(fit)
  loo(fit)
  

[Package neodistr version 0.1.1 Index]