modelStatistics {ndl} | R Documentation |
Calculate a range of goodness of fit measures for an object fitted with some multivariate statistical method that yields probability estimates for outcomes.
Description
modelStatistics
calculates a range of goodness of fit
measures.
Usage
modelStatistics(observed, predicted, frequency=NA, p.values,
n.data, n.predictors, outcomes=levels(as.factor(observed)),
p.normalize=TRUE, cross.tabulation=TRUE,
p.zero.correction=1/(NROW(p.values)*NCOL(p.values))^2)
Arguments
observed |
observed values of the response variable |
predicted |
predicted values of the response variable; typically the outcome estimated to have the highest probability |
frequency |
frequencies of observed and predicted values; if |
p.values |
matrix of probabilities for all values of the response variable (i.e outcomes) |
n.data |
sum frequency of data points in model |
n.predictors |
number of predictor levels in model |
outcomes |
a vector with the possible values of the response variable |
p.normalize |
if |
cross.tabulation |
if |
p.zero.correction |
a function to adjust slightly response/outcome-specific probability estimates which are exactly P=0; necessary for the proper calculation of pseudo-R-squared statistics; by default calculated on the basis of the dimensions of the matrix of probabilities |
Value
A list with the following components:
loglikelihood.null
Loglikelihood for null model
loglikelihood.model
Loglikelihood for fitted model
deviance.null
Null deviance
deviance.model
Model deviance
R2.likelihood
(McFadden's) R-squared
R2.nagelkerke
Nagelkerke's R-squared
AIC.model
Akaike's Information Criterion
BIC.model
Bayesian Information Criterion
C
index of concordance C (for binary response variables only)
crosstable
Crosstabulation of observed and predicted outcomes, if
cross.tabulation=TRUE
crosstableStatistics(crosstable)
Various statistics calculated on
crosstable
withcrosstableStatistics
, ifcross.tabulation=TRUE
Author(s)
Antti Arppe and Harald Baayen
References
Arppe, A. 2008. Univariate, bivariate and multivariate methods in corpus-based lexicography – a study of synonymy. Publications of the Department of General Linguistics, University of Helsinki, No. 44. URN: http://urn.fi/URN:ISBN:978-952-10-5175-3.
Arppe, A., and Baayen, R. H. (in prep.) Statistical modeling and the principles of human learning.
Hosmer, David W., Jr., and Stanley Lemeshow 2000. Applied Regression Analysis (2nd edition). New York: Wiley.
See Also
See also ndlClassify
, ndlStatistics
, crosstableStatistics
.
Examples
data(think)
think.ndl <- ndlClassify(Lexeme ~ Agent + Patient, data=think)
probs <- acts2probs(think.ndl$activationMatrix)$p
preds <- acts2probs(think.ndl$activationMatrix)$predicted
n.data <- nrow(think)
n.predictors <- nrow(think.ndl$weightMatrix) *
ncol(think.ndl$weightMatrix)
modelStatistics(observed=think$Lexeme, predicted=preds, p.values=probs,
n.data=n.data, n.predictors=n.predictors)