RescorlaWagner {ndl} | R Documentation |
Implementation of the Rescorla-Wagner equations.
Description
RescorlaWagner
implements an iterative simulation based on the Rescorla-Wagner equations. Given a data frame specifying cues, outcomes, and frequencies, it calculates, for a given cue-outcome pair,
the temporal sequence of developing weights.
Usage
RescorlaWagner(cuesOutcomes, traceCue="h", traceOutcome="hand",
nruns=1, random=TRUE, randomOrder = NA, alpha=0.1, lambda=1,
beta1=0.1, beta2=0.1)
Arguments
cuesOutcomes |
A data frame specifying cues, outcomes, and frequencies of combinations of cues and outcomes. In the data frame, cues and outcomes should be character vectors. |
traceCue |
A character string specifying the cue to be traced over time. |
traceOutcome |
A character string specifying the outcome to be traced over time. |
nruns |
An integer specifying the number of times the data have to be presented
for learning. The total number of learning trials is
|
random |
A logical specifying whether the order of the learning trials for a given
run should be randomly reordered. Can be set to |
randomOrder |
If not |
alpha |
The salience of the trace cue. |
lambda |
The maximum level of associative strength possible. |
beta1 |
The salience of the situation in which the outcome occurs. |
beta2 |
The salience of the situation in which the outcome does not occur. |
Details
The equilibrium weights (Danks, 2003) are also estimated.
Value
An object of the class "RescorlaWagner"
, being a list with
the following components:
weightvector
A numeric vector with the weights for all
nruns*sum(dat[,"Frequency"])
training trials.equilibriumWeight
The weight of the cue-outcome link at equilibrium.
traceCue
A character string specifying the trace cue.
traceOutcome
A character string specifying the trace outcome.
Author(s)
R. H. Baayen and Antti Arppe
References
Danks, D. (2003). Equilibria of the Rescorla-Wagner model. Journal of Mathematical Psychology, 47 (2), 109-121.
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H., & Prokasy, W. F. (Eds.), Classical conditioning II: Current research and theory (pp. 64-99). New York: Appleton-Century-Crofts.
See Also
orthoCoding
, plot.RescorlaWagner
, numbers
Examples
data(lexample)
lexample$Cues <- orthoCoding(lexample$Word, grams=1)
lexample.rw <- RescorlaWagner(lexample, nruns=25,
traceCue="h", traceOutcome="hand")
plot(lexample.rw)
data(numbers)
traceCues=c( "exactly1", "exactly2", "exactly3", "exactly4",
"exactly5", "exactly6", "exactly7", "exactly10", "exactly15")
traceOutcomes=c("1", "2", "3", "4", "5", "6", "7", "10", "15")
ylimit=c(0,1)
par(mfrow=c(3,3),mar=c(4,4,1,1))
for(i in 1:length(traceCues)) {
numbers.rw <- RescorlaWagner(numbers, nruns=1,
traceCue=traceCues[i], traceOutcome=traceOutcomes[i])
plot(numbers.rw, ylimit=ylimit)
mtext(paste(traceCues[i], " - ", traceOutcomes[i], sep=""),
side=3, line=-1, cex=0.7)
}
par(mfrow=c(1,1))