summary.cv.ncvreg {ncvreg} | R Documentation |
Summarizing cross-validation-based inference
Description
Summary method for cv.ncvreg
objects
Usage
## S3 method for class 'cv.ncvreg'
summary(object, ...)
## S3 method for class 'summary.cv.ncvreg'
print(x, digits, ...)
Arguments
object |
A |
... |
Further arguments passed to or from other methods. |
x |
A |
digits |
Number of digits past the decimal point to print out. Can be a vector specifying different display digits for each of the five non-integer printed values. |
Value
An object with S3 class summary.cv.ncvreg
. The class has its own
print method and contains the following list elements:
- penalty
The penalty used by
ncvreg
.- model
Either
"linear"
or"logistic"
, depending on thefamily
option inncvreg
.- n
Number of instances
- p
Number of regression coefficients (not including the intercept).
- min
The index of
lambda
with the smallest cross-validation error.- lambda
The sequence of
lambda
values used bycv.ncvreg
.- cve
Cross-validation error (deviance).
- r.squared
Proportion of variance explained by the model, as estimated by cross-validation. For models outside of linear regression, the Cox-Snell approach to defining R-squared is used.
- snr
Signal to noise ratio, as estimated by cross-validation.
- sigma
For linear regression models, the scale parameter estimate.
- pe
For logistic regression models, the prediction error (misclassification error).
Author(s)
Patrick Breheny
References
Breheny P and Huang J. (2011) Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Annals of Applied Statistics, 5: 232-253. doi:10.1214/10-AOAS388
See Also
ncvreg()
, cv.ncvreg()
, plot.cv.ncvreg()
Examples
# Linear regression --------------------------------------------------
data(Prostate)
cvfit <- cv.ncvreg(Prostate$X, Prostate$y)
summary(cvfit)
# Logistic regression ------------------------------------------------
data(Heart)
cvfit <- cv.ncvreg(Heart$X, Heart$y, family="binomial")
summary(cvfit)
# Cox regression -----------------------------------------------------
data(Lung)
cvfit <- cv.ncvsurv(Lung$X, Lung$y)
summary(cvfit)