fold.cv.ncpen {ncpen} | R Documentation |
fold.cv.ncpen: extracts fold ids for cv.ncpen
.
Description
The function returns fold configuration of the samples for CV.
Usage
fold.cv.ncpen(c.vec, n.fold = 10, family = c("gaussian", "binomial",
"multinomial", "cox", "poisson"))
Arguments
c.vec |
(numeric vector) vector for construction of CV ids:
censoring indicator for |
n.fold |
(numeric) number of folds for CV. |
family |
(character) regression model. Supported models are
|
Value
fold ids of the samples.
idx |
fold ids. |
n.fold |
the number of folds. |
family |
the model. |
Author(s)
Dongshin Kim, Sunghoon Kwon, Sangin Lee
References
Lee, S., Kwon, S. and Kim, Y. (2016). A modified local quadratic approximation algorithm for penalized optimization problems. Computational Statistics and Data Analysis, 94, 275-286.
See Also
cv.ncpen
, plot.cv.ncpen
, gic.ncpen
Examples
### linear regression with scad penalty
sam = sam.gen.ncpen(n=200,p=20,q=5,cf.min=0.5,cf.max=1,corr=0.5)
x.mat = sam$x.mat; y.vec = sam$y.vec
fold.id = fold.cv.ncpen(c.vec=y.vec,n.fold=10)
### logistic regression with classo penalty
sam = sam.gen.ncpen(n=200,p=20,q=5,cf.min=0.5,cf.max=1,corr=0.5,family="binomial")
x.mat = sam$x.mat; y.vec = sam$y.vec
fold.id = fold.cv.ncpen(c.vec=y.vec,n.fold=10,family="binomial")
### poison regression with mlog penalty
sam = sam.gen.ncpen(n=200,p=20,q=5,cf.min=0.5,cf.max=1,corr=0.5,family="poisson")
x.mat = sam$x.mat; y.vec = sam$y.vec
fold.id = fold.cv.ncpen(c.vec=y.vec,n.fold=10,family="poisson")
### multinomial regression with sridge penalty
sam = sam.gen.ncpen(n=200,p=20,q=5,k=3,cf.min=0.5,cf.max=1,corr=0.5,family="multinomial")
x.mat = sam$x.mat; y.vec = sam$y.vec
fold.id = fold.cv.ncpen(c.vec=y.vec,n.fold=10,family="multinomial")
### cox regression with mcp penalty
sam = sam.gen.ncpen(n=200,p=20,q=5,r=0.2,cf.min=0.5,cf.max=1,corr=0.5,family="cox")
x.mat = sam$x.mat; y.vec = sam$y.vec
fold.id = fold.cv.ncpen(c.vec=x.mat[,21],n.fold=10,family="cox")
[Package ncpen version 1.0.0 Index]