coef.cv.ncpen {ncpen} | R Documentation |
coef.cv.ncpen: extracts the optimal coefficients from cv.ncpen
.
Description
The function returns the optimal vector of coefficients.
Usage
## S3 method for class 'cv.ncpen'
coef(object, type = c("rmse", "like"), ...)
Arguments
object |
(cv.ncpen object) fitted |
type |
(character) a cross-validated error type which is either |
... |
other S3 parameters. Not used.
Each error type is defined in |
Value
the optimal coefficients vector selected by cross-validation.
type |
error type. |
lambda |
the optimal lambda selected by CV. |
beta |
the optimal coefficients selected by CV. |
Author(s)
Dongshin Kim, Sunghoon Kwon, Sangin Lee
References
Lee, S., Kwon, S. and Kim, Y. (2016). A modified local quadratic approximation algorithm for penalized optimization problems. Computational Statistics and Data Analysis, 94, 275-286.
See Also
cv.ncpen
, plot.cv.ncpen
, gic.ncpen
Examples
### linear regression with scad penalty
sam = sam.gen.ncpen(n=200,p=10,q=5,cf.min=0.5,cf.max=1,corr=0.5)
x.mat = sam$x.mat; y.vec = sam$y.vec
fit = cv.ncpen(y.vec=y.vec,x.mat=x.mat,n.lambda=10)
coef(fit)
### logistic regression with classo penalty
sam = sam.gen.ncpen(n=200,p=10,q=5,cf.min=0.5,cf.max=1,corr=0.5,family="binomial")
x.mat = sam$x.mat; y.vec = sam$y.vec
fit = cv.ncpen(y.vec=y.vec,x.mat=x.mat,n.lambda=10,family="binomial",penalty="classo")
coef(fit)
### multinomial regression with sridge penalty
sam = sam.gen.ncpen(n=200,p=10,q=5,k=3,cf.min=0.5,cf.max=1,corr=0.5,family="multinomial")
x.mat = sam$x.mat; y.vec = sam$y.vec
fit = cv.ncpen(y.vec=y.vec,x.mat=x.mat,n.lambda=10,family="multinomial",penalty="sridge")
coef(fit)
[Package ncpen version 1.0.0 Index]