nbfar_control {nbfar} | R Documentation |
Control parameters for NBFAR and NBRRR
Description
Default value for a list of control parameters that are used to estimate the parameters of negative binomial co-sparse factor regression (NBFAR) and negative binomial reduced rank regression (NBRRR).
Usage
nbfar_control(
maxit = 5000,
epsilon = 1e-07,
elnetAlpha = 0.95,
gamma0 = 1,
spU = 0.5,
spV = 0.5,
lamMaxFac = 1,
lamMinFac = 1e-06,
initmaxit = 10000,
initepsilon = 1e-08,
objI = 0
)
Arguments
maxit |
maximum iteration for each sequential steps |
epsilon |
tolerance value required for convergence of inner loop in GCURE |
elnetAlpha |
elastic net penalty parameter |
gamma0 |
power parameter for generating the adaptive weights |
spU |
maximum proportion of nonzero elements in each column of U |
spV |
maximum proportion of nonzero elements in each column of V |
lamMaxFac |
a multiplier of the computed maximum value (lambda_max) of the tuning parameter |
lamMinFac |
a multiplier to determine lambda_min as a fraction of lambda_max |
initmaxit |
maximum iteration for minimizing the objective function while computing the initial estimates of the model parameter |
initepsilon |
tolerance value required for the convergence of the objective function while computing the initial estimates of the model parameter |
objI |
1 or 0 to indicate that the convergence will be on the basis of objective function or not |
Value
a list of controlling parameter.
References
Mishra, A., Müller, C. (2022) Negative binomial factor regression models with application to microbiome data analysis. https://doi.org/10.1101/2021.11.29.470304
Examples
control <- nbfar_control()