| olasso {natural} | R Documentation | 
Error standard deviation estimation using organic lasso
Description
Solve the organic lasso problem
\tilde{\sigma}^2_{\lambda} = \min_{\beta} ||y - X \beta||_2^2 / n + 2 \lambda ||\beta||_1^2
with two pre-specified values of tuning parameter:
\lambda_1 = log p / n, and \lambda_2, which is a Monte-Carlo estimate of ||X^T e||_\infty^2 / n^2, where e is n-dimensional standard normal.
Usage
olasso(x, y, intercept = TRUE, thresh = 1e-08)
Arguments
| x | An  | 
| y | A response vector of size  | 
| intercept | Indicator of whether intercept should be fitted. Default to be  | 
| thresh | Threshold value for underlying optimization algorithm to claim convergence. Default to be  | 
Value
A list object containing:
- nand- p:
- The dimension of the problem. 
- lam_1,- lam_2:
- log(p) / n, and an Monte-Carlo estimate of- ||X^T e||_\infty^2 / n^2, where- eis n-dimensional standard normal.
- a0_1,- a0_2:
- Estimate of intercept, corresponding to - lam_1and- lam_2.
- beta_1,- beta_2:
- Organic lasso estimate of regression coefficients, corresponding to - lam_1and- lam_2.
- sig_obj_1,- sig_obj_2:
- Organic lasso estimate of the error standard deviation, corresponding to - lam_1and- lam_2.
See Also
Examples
set.seed(123)
sim <- make_sparse_model(n = 50, p = 200, alpha = 0.6, rho = 0.6, snr = 2, nsim = 1)
ol <- olasso(x = sim$x, y = sim$y[, 1])