| nlasso_path {natural} | R Documentation | 
Fit a linear model with natural lasso
Description
Calculate a solution path of the natural lasso estimate (of error standard deviation) with a list of tuning parameter values. In particular, this function solves the lasso problems and returns the lasso objective function values as estimates of the error variance:
\hat{\sigma}^2_{\lambda} = \min_{\beta} ||y - X \beta||_2^2 / n + 2 \lambda ||\beta||_1.
The output also includes a path of naive estimates and a path of degree of freedom adjusted estimates of the error standard deviation.
Usage
nlasso_path(x, y, lambda = NULL, nlam = 100, flmin = 0.01,
  thresh = 1e-08, intercept = TRUE, glmnet_output = NULL)
Arguments
| x | An  | 
| y | A response vector of size  | 
| lambda | A user specified list of tuning parameter. Default to be NULL, and the program will compute its own  | 
| nlam | The number of  | 
| flmin | The ratio of the smallest and the largest values in  | 
| thresh | Threshold value for the underlying optimization algorithm to claim convergence. Default to be  | 
| intercept | Indicator of whether intercept should be fitted. Default to be  | 
| glmnet_output | Should the estimate be computed using a user-specified output from  | 
Value
A list object containing:
- nand- p:
- The dimension of the problem. 
- lambda:
- The path of tuning parameters used. 
- beta:
- Matrix of estimates of the regression coefficients, in the original scale. The matrix is of size - pby- nlam. The- j-th column represents the estimate of coefficient corresponding to the- j-th tuning parameter in- lambda.
- a0:
- Estimate of intercept. A vector of length - nlam.
- sig_obj_path:
- Natural lasso estimates of the error standard deviation. A vector of length - nlam.
- sig_naive_path:
- Naive estimates of the error standard deviation based on lasso regression, i.e., - ||y - X \hat{\beta}||_2 / \sqrt n. A vector of length- nlam.
- sig_df_path:
- Degree-of-freedom adjusted estimate of standard deviation of the error. A vector of length - nlam. See Reid, et, al (2016).
- type:
- whether the output is of a natural or an organic lasso. 
See Also
Examples
set.seed(123)
sim <- make_sparse_model(n = 50, p = 200, alpha = 0.6, rho = 0.6, snr = 2, nsim = 1)
nl_path <- nlasso_path(x = sim$x, y = sim$y[, 1])