tlbofgwc {naspaclust} | R Documentation |
Fuzzy Geographicaly Weighted Clustering with Teaching - Learning Based Optimization
Description
Fuzzy clustering with addition of spatial configuration of membership matrix with centroid optimization using Teaching - Learning Based Algorithm.
Usage
tlbofgwc(
data,
pop = NA,
distmat = NA,
ncluster = 2,
m = 2,
distance = "euclidean",
order = 2,
alpha = 0.7,
a = 1,
b = 1,
error = 1e-05,
max.iter = 100,
randomN = 0,
vi.dist = "uniform",
nstud = 10,
tlbo.same = 10,
nselection = 10,
elitism = F,
n.elite = 2
)
Arguments
data |
an object of data with d>1. Can be |
pop |
an n*1 vector contains population. |
distmat |
an n*n distance matrix between regions. |
ncluster |
an integer. The number of clusters. |
m |
degree of fuzziness or fuzzifier. Default is 2. |
distance |
the distance metric between data and centroid, the default is euclidean, see |
order |
minkowski order. default is 2. |
alpha |
the old membership effect with [0,1], if |
a |
spatial magnitude of distance. Default is 1. |
b |
spatial magnitude of population. Default is 1. |
error |
error tolerance. Default is 1e-5. |
max.iter |
maximum iteration. Default is 500. |
randomN |
random seed for initialisation (if uij or vi is NA). Default is 0. |
vi.dist |
a string of centroid population distribution between |
nstud |
number of students. Can be defined as |
tlbo.same |
number of consecutive unchange to stop the iteration. Can be defined as |
nselection |
number of teachers based on selected students. Can be defined as |
elitism |
wheter to use elitism algorithm or not. Either |
n.elite |
Number of elitist students. Can be defined as |
Details
Fuzzy Geographically Weighted Clustering (FGWC) was developed by Mason and Jacobson (2007) by adding neighborhood effects and population to configure the membership matrix in Fuzzy C-Means. Furthermore, the Teaching - Learning Based Optimization was developed by Rao et al. (2012) and Developed by Rao and Patel (2012) by adding the elitism algorithm in order to get a more optimal solution of a certain complex function.
Value
an object of class 'fgwc'
.
An 'fgwc'
object contains as follows:
-
converg
- the process convergence of objective function -
f_obj
- objective function value -
membership
- membership matrix -
centroid
- centroid matrix -
validation
- validation indices (there are partition coefficient (PC
), classification entropy (CE
), SC index (SC
), separation index (SI
), Xie and Beni's index (XB
), IFV index (IFV
), and Kwon index (Kwon)) -
max.iter
- Maximum iteration -
cluster
- the cluster of the data -
finaldata
- The final data (with the cluster) -
call
- the syntax called previously -
time
- computational time.
References
Mason GA, Jacobson RD (2007).
“Fuzzy Geographically Weighted Clustering.”
In Proceedings of the 9th International Conference on Geocomputation, 1–7.
Rao RV, Patel V (2012).
“An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems.”
International Journal of Industrial Engineering Computations, 3(4), 535–560.
ISSN 19232926, doi: 10.5267/j.ijiec.2012.03.007, https://doi.org/10.5267/j.ijiec.2012.03.007.
Rao RV, Savsani VJ, Balic J (2012).
“Teaching\- learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems.”
Engineering Optimization, 44(12), 1447–1462.
doi: 10.1080/0305215x.2011.652103, https://doi.org/10.1080/0305215x.2011.652103.
See Also
Examples
data('census2010')
data('census2010dist')
data('census2010pop')
# First way
res1 <- tlbofgwc(census2010,census2010pop,census2010dist,3,2,'minkowski',4,nstud=10)
# Second way
# initiate parameter
param_fgwc <- c(kind='v',ncluster=3,m=2,distance='minkowski',order=3,
alpha=0.5,a=1.2,b=1.2,max.iter=1000,error=1e-6,randomN=10)
## tune the TLBO parameter
tlbo_param <- c(vi.dist="uniform",nstud=10, tlbo.same=10,
nselection=10,elitism=FALSE,n.elite=2)
##FGWC with TLBO
res2 <- fgwc(census2010,census2010pop,census2010dist,'tlbo',param_fgwc,tlbo_param)