| plot.nonparametric_naive_bayes {naivebayes} | R Documentation |
Plot Method for nonparametric_naive_bayes Objects
Description
Plot method for objects of class "nonparametric_naive_bayes" designed for a quick look at the estimated class marginal or class conditional densities of metric predictors.
Usage
## S3 method for class 'nonparametric_naive_bayes'
plot(x, which = NULL, ask = FALSE, legend = TRUE,
legend.box = FALSE, arg.num = list(),
prob = c("marginal", "conditional"), ...)
Arguments
x |
object of class inheriting from |
which |
variables to be plotted (all by default). This can be any valid indexing vector or vector containing names of variables. |
ask |
logical; if |
legend |
logical; if |
legend.box |
logical; if |
arg.num |
other parameters to be passed as a named list to |
prob |
character; if "marginal" then marginal distributions of predictor variables for each class are visualised and if "conditional" then the class conditional distributions of predictor variables are depicted. By default, prob="marginal". |
... |
not used. |
Details
Estimated class marginal or class conditional densities are visualised by matplot.
The parameter prob controls the kind of probabilities to be visualized for each individual predictor Xi. It can take on two values:
"marginal":
P(Xi|class) * P(class)"conditional":
P(Xi|class)
Author(s)
Michal Majka, michalmajka@hotmail.com
See Also
naive_bayes, nonparametric_naive_bayes predict.nonparametric_naive_bayes, tables, get_cond_dist
Examples
data(iris)
y <- iris[[5]]
M <- as.matrix(iris[-5])
### Train the Non-Parametric Naive Bayes with custom prior
prior <- c(0.1,0.3,0.6)
nnb <- nonparametric_naive_bayes(x = M, y = y, prior = prior)
nnb2 <- nonparametric_naive_bayes(x = M, y = y, prior = prior, adjust = 1.5)
nnb3 <- nonparametric_naive_bayes(x = M, y = y, prior = prior, bw = "ucv")
# Visualize estimated class conditional densities corresponding
# to the first feature
plot(nnb, which = 1, prob = "conditional")
plot(nnb2, which = 1, prob = "cond")
plot(nnb3, which = 1, prob = "c")
# Visualize estimated class marginal densities corresponding
# to the first feature
plot(nnb, which = 1)
plot(nnb2, which = 1)
plot(nnb3, which = 1)