plot.bernoulli_naive_bayes {naivebayes} | R Documentation |
Plot Method for bernoulli_naive_bayes Objects
Description
Plot method for objects of class "bernoulli_naive_bayes"
designed for a quick look at the class marginal distributions or class conditional distributions of 0-1 valued predictors.
Usage
## S3 method for class 'bernoulli_naive_bayes'
plot(x, which = NULL, ask = FALSE, arg.cat = list(),
prob = c("marginal", "conditional"), ...)
Arguments
x |
object of class inheriting from |
which |
variables to be plotted (all by default). This can be any valid indexing vector or vector containing names of variables. |
ask |
logical; if |
arg.cat |
other parameters to be passed as a named list to |
prob |
character; if "marginal" then marginal distributions of predictor variables for each class are visualised and if "conditional" then the class conditional distributions of predictor variables are depicted. By default, prob="marginal". |
... |
not used. |
Details
Class conditional or class conditional distributions are visualised by mosaicplot
.
The parameter prob
controls the kind of probabilities to be visualized for each individual predictor Xi
. It can take on two values:
"marginal":
P(Xi|class) * P(class)
"conditional":
P(Xi|class)
Author(s)
Michal Majka, michalmajka@hotmail.com
See Also
naive_bayes
,bernoulli_naive_bayes
predict.bernoulli_naive_bayes
, tables
, get_cond_dist
Examples
# Simulate data
cols <- 10 ; rows <- 100 ; probs <- c("0" = 0.4, "1" = 0.1)
M <- matrix(sample(0:1, rows * cols, TRUE, probs), nrow = rows, ncol = cols)
y <- factor(sample(paste0("class", LETTERS[1:2]), rows, TRUE, prob = c(0.3,0.7)))
colnames(M) <- paste0("V", seq_len(ncol(M)))
laplace <- 0.5
# Train the Bernoulli Naive Bayes model
bnb <- bernoulli_naive_bayes(x = M, y = y, laplace = laplace)
# Visualize class marginal probabilities corresponding to the first feature
plot(bnb, which = 1)
# Visualize class conditional probabilities corresponding to the first feature
plot(bnb, which = 1, prob = "conditional")