nFunNNmodel {nFunNN} | R Documentation |
Nonlinear FPCA using neural networks
Description
Nonlinear functional principal component analysis using a transformed functional autoassociative neural network.
Usage
nFunNNmodel(
X_ob,
t_grid,
t_grid_est,
L_smooth,
L,
J,
K,
R,
lr = 0.001,
batch_size,
n_epoch
)
Arguments
X_ob |
A |
t_grid |
A |
t_grid_est |
A |
L_smooth |
An |
L |
An |
J |
An |
K |
An |
R |
An |
lr |
A scalar denoting the learning rate. (default: 0.001) |
batch_size |
An |
n_epoch |
An |
Value
A list
containing the following components:
model |
The resulting neural network trained by the observed data. |
loss |
A |
Comp_time |
An object of class "difftime" denoting the computation time in seconds. |
Examples
n <- 2000
m <- 51
t_grid <- seq(0, 1, length.out = m)
m_est <- 101
t_grid_est <- seq(0, 1, length.out = m_est)
err_sd <- 0.1
Z_1a <- stats::rnorm(n, 0, 3)
Z_2a <- stats::rnorm(n, 0, 2)
Z_a <- cbind(Z_1a, Z_2a)
Phi <- cbind(sin(2 * pi * t_grid), cos(2 * pi * t_grid))
Phi_est <- cbind(sin(2 * pi * t_grid_est), cos(2 * pi * t_grid_est))
X <- Z_a %*% t(Phi)
X_to_est <- Z_a %*% t(Phi_est)
X_ob <- X + matrix(stats::rnorm(n * m, 0, err_sd), nr = n, nc = m)
L_smooth <- 10
L <- 10
J <- 20
K <- 2
R <- 20
nFunNN_res <- nFunNNmodel(X_ob, t_grid, t_grid_est, L_smooth,
L, J, K, R, lr = 0.001, n_epoch = 1500, batch_size = 100)