structureSim {nFactors} | R Documentation |
Population or Simulated Sample Correlation Matrix from a Given Factor Structure Matrix
Description
The structureSim
function returns a population and a sample
correlation matrices from a predefined congeneric factor structure.
Usage
structureSim(fload, reppar = 30, repsim = 100, N, quantile = 0.95,
model = "components", adequacy = FALSE, details = TRUE,
r2limen = 0.75, all = FALSE)
Arguments
fload |
matrix: loadings of the factor structure |
reppar |
numeric: number of replications for the parallel analysis |
repsim |
numeric: number of replications of the matrix correlation simulation |
N |
numeric: number of subjects |
quantile |
numeric: quantile for the parallel analysis |
model |
character: |
adequacy |
logical: if |
details |
logical: if |
r2limen |
numeric: R2 limen value for the R2 Nelson index |
all |
logical: if |
Value
values |
the output depends of the logical value of details.
If |
Author(s)
Gilles Raiche
Centre sur les Applications des Modeles de
Reponses aux Items (CAMRI)
Universite du Quebec a Montreal
raiche.gilles@uqam.ca
References
Raiche, G., Walls, T. A., Magis, D., Riopel, M. and Blais, J.-G. (2013). Non-graphical solutions for Cattell's scree test. Methodology, 9(1), 23-29.
Zwick, W. R. and Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99, 432-442.
See Also
principalComponents
,
iterativePrincipalAxis
, rRecovery
Examples
## Not run:
# .......................................................
# Example inspired from Zwick and Velicer (1986, table 2, p. 437)
## ...................................................................
nFactors <- 3
unique <- 0.2
loadings <- 0.5
nsubjects <- 180
repsim <- 30
zwick <- generateStructure(var=36, mjc=nFactors, pmjc=12,
loadings=loadings,
unique=unique)
## ...................................................................
# Produce statistics about a replication of a parallel analysis on
# 30 sampled correlation matrices
mzwick.fa <- structureSim(fload=as.matrix(zwick), reppar=30,
repsim=repsim, N=nsubjects, quantile=0.5,
model="factors")
mzwick <- structureSim(fload=as.matrix(zwick), reppar=30,
repsim=repsim, N=nsubjects, quantile=0.5, all=TRUE)
# Very long execution time that could be used only with model="components"
# mzwick <- structureSim(fload=as.matrix(zwick), reppar=30,
# repsim=repsim, N=nsubjects, quantile=0.5, all=TRUE)
par(mfrow=c(2,1))
plot(x=mzwick, nFactors=nFactors, index=c(1:14), cex.axis=0.7, col="red")
plot(x=mzwick.fa, nFactors=nFactors, index=c(1:11), cex.axis=0.7, col="red")
par(mfrow=c(1,1))
par(mfrow=c(2,1))
boxplot(x=mzwick, nFactors=3, cex.axis=0.8, vLine="blue", col="red")
boxplot(x=mzwick.fa, nFactors=3, cex.axis=0.8, vLine="blue", col="red",
xlab="Components")
par(mfrow=c(1,1))
# ......................................................
## End(Not run)