nMreg {nFactors} | R Documentation |
Multiple Regression Procedure to Determine the Number of Components/Factors
Description
This function computes the \beta
indices, like their associated
Student t and probability (Zoski and Jurs, 1993, 1996, p. 445). These
three values can be used as three different indices for determining the
number of components/factors to retain.
Usage
nMreg(x, cor = TRUE, model = "components", details = TRUE, ...)
Arguments
x |
numeric: a |
cor |
logical: if |
model |
character: |
details |
logical: if |
... |
variable: additionnal parameters to give to the
|
Details
When the associated Student t test is applied, the following
hypothesis is considered:
(1) \qquad \qquad H_k: \beta (\lambda_1 \ldots \lambda_k) - \beta
(\lambda_{k+1} \ldots \lambda_p), (k = 3, \ldots, p-3) = 0
Value
nFactors |
numeric: number of components/factors retained by the MREG procedures. |
details |
numeric: matrix of the details for each indices. |
Author(s)
Gilles Raiche
Centre sur les Applications des Modeles de
Reponses aux Items (CAMRI)
Universite du Quebec a Montreal
raiche.gilles@uqam.ca
References
Zoski, K. and Jurs, S. (1993). Using multiple regression to determine the number of factors to retain in factor analysis. Multiple Linear Regression Viewpoints, 20(1), 5-9.
Zoski, K. and Jurs, S. (1996). An objective counterpart to the visual scree test for factor analysis: the standard error scree test. Educational and Psychological Measurement, 56(3), 443-451.
See Also
plotuScree
, nScree
,
plotnScree
, plotParallel
Examples
## SIMPLE EXAMPLE OF A MREG ANALYSIS
data(dFactors)
eig <- dFactors$Raiche$eigenvalues
results <- nMreg(eig)
results
plotuScree(eig, main=paste(results$nFactors[1], ", ",
results$nFactors[2], " or ",
results$nFactors[3],
" factors retained by the MREG procedures",
sep=""))