eigenComputes {nFactors} | R Documentation |
Computes Eigenvalues According to the Data Type
Description
The eigenComputes
function computes eigenvalues from the identified data
type. It is used internally in many
fonctions of the nFactors package in order to apply these to a vector of
eigenvalues, a matrix of correlations or covariance or a data frame.
Usage
eigenComputes(x, cor = TRUE, model = "components", ...)
Arguments
x |
numeric: a |
cor |
logical: if |
model |
character: |
... |
variable: additionnal parameters to give to the |
Value
numeric: return a vector of eigenvalues
Author(s)
Gilles Raiche
Centre sur les Applications des Modeles de
Reponses aux Items (CAMRI)
Universite du Quebec a Montreal
raiche.gilles@uqam.ca
David Magis
Departement de mathematiques
Universite de Liege
David.Magis@ulg.ac.be
Examples
# .......................................................
# Different data types
# Vector of eigenvalues
data(dFactors)
x1 <- dFactors$Cliff1$eigenvalues
eigenComputes(x1)
# Data from a data.frame
x2 <- data.frame(matrix(20*rnorm(100), ncol=5))
eigenComputes(x2, cor=TRUE, use="everything")
eigenComputes(x2, cor=FALSE, use="everything")
eigenComputes(x2, cor=TRUE, use="everything", method="spearman")
eigenComputes(x2, cor=TRUE, use="everything", method="kendall")
x3 <- cov(x2)
eigenComputes(x3, cor=TRUE, use="everything")
eigenComputes(x3, cor=FALSE, use="everything")
x4 <- cor(x2)
eigenComputes(x4, use="everything")
# .......................................................