run_mfpca {mxfda} | R Documentation |
run_fpca
Description
This is a wrapper for the function mfpca.face
from the refund
package. EXPAND
Usage
run_mfpca(
mxFDAobject,
metric = "uni k",
r = "r",
value = "fundiff",
knots = NULL,
lightweight = FALSE,
...
)
Arguments
mxFDAobject |
object of class |
metric |
name of calculated spatial metric to use |
r |
Character string, the name of the variable that identifies the function domain (usually a radius for spatial summary functions). Default is "r". |
value |
Character string, the name of the variable that identifies the spatial summary function values. Default is "fundiff". |
knots |
Number of knots for defining spline basis.Defaults to the number of measurements per function divided by 2. |
lightweight |
Default is FALSE. If TRUE, removes Y and Yhat from returned mFPCA object. A good option to select for large datasets. |
... |
Optional other arguments to be passed to |
Details
Value
A mxFDA
object with the functional_mpca
slot for the respective spatial summary function containing:
mxfundata |
The original dataframe of spatial summary functions, with scores from FPCA appended for downstream modeling |
fpc_object |
A list of class "fpca" with elements described in the documentation for |
Author(s)
unknown first.last@domain.extension
Julia Wrobel julia.wrobel@emory.edu
Alex Soupir alex.soupir@moffitt.org
References
Xiao, L., Ruppert, D., Zipunnikov, V., and Crainiceanu, C. (2016). Fast covariance estimation for high-dimensional functional data. Statistics and Computing, 26, 409-421. DOI: 10.1007/s11222-014-9485-x.
Examples
#load data
data(lung_FDA)
#run mixed fpca
lung_FDA = run_mfpca(lung_FDA, metric = 'uni g')