myALS_SVD {mwTensor} | R Documentation |
Alternating Least Square Singular Value Decomposition (ALS-SVD) as an example of user-defined matrix decomposition.
Description
The input data is assumed to be a matrix. When algorithms of MWCAParams and CoupledMWCAParams are specified as "myALS_SVD", This function is called in MWCA and CoupledMWCA.
Usage
myALS_SVD(Xn, k, L2=1e-10, iter=30)
Arguments
Xn |
The input matrix which has N-rows and M-columns. |
k |
The rank parameter (k <= min(N,M)) |
L2 |
The regularization parameter (Default: 1e-10) |
iter |
The number of iteration (Default: 30) |
Value
The output matrix which has N-rows and k-columns.
Author(s)
Koki Tsuyuzaki
References
Madeleine Udell et al., (2016). Generalized Low Rank Models, Foundations and Trends in Machine Learning, 9(1).
Examples
if(interactive()){
# Test data
matdata <- matrix(runif(10*20), nrow=10, ncol=20)
# Perform ALS-SVD
myALS_SVD(matdata, k=3, L2=0.1, iter=10)
}
[Package mwTensor version 1.1.0 Index]