mwTensor-package {mwTensor} | R Documentation |
Multi-Way Component Analysis
Description
For single tensor data, any matrix factorization method can be specified the matricised tensor in each dimension by Multi-way Component Analysis (MWCA). An originally extended MWCA is also implemented to specify and decompose multiple matrices and tensors simultaneously (CoupledMWCA). See the reference section of GitHub README.md <https://github.com/rikenbit/mwTensor>, for details of the methods.
Details
The DESCRIPTION file:
Package: | mwTensor |
Type: | Package |
Title: | Multi-Way Component Analysis |
Version: | 1.1.0 |
Authors@R: | c(person("Koki", "Tsuyuzaki", role = c("aut", "cre"), email = "k.t.the-answer@hotmail.co.jp")) |
Suggests: | testthat |
Depends: | R (>= 4.1.0) |
Imports: | methods, MASS, rTensor, nnTensor, ccTensor, iTensor, igraph |
Description: | For single tensor data, any matrix factorization method can be specified the matricised tensor in each dimension by Multi-way Component Analysis (MWCA). An originally extended MWCA is also implemented to specify and decompose multiple matrices and tensors simultaneously (CoupledMWCA). See the reference section of GitHub README.md <https://github.com/rikenbit/mwTensor>, for details of the methods. |
License: | MIT + file LICENSE |
URL: | https://github.com/rikenbit/mwTensor |
Author: | Koki Tsuyuzaki [aut, cre] |
Maintainer: | Koki Tsuyuzaki <k.t.the-answer@hotmail.co.jp> |
Index of help topics:
CoupledMWCA Coupled Multi-way Component Analysis (CoupledMWCA) CoupledMWCAParams-class Class "CoupledMWCAParams" CoupledMWCAResult-class Class "CoupledMWCAResult" MWCA Multi-way Component Analysis (MWCA) MWCAParams-class Class "MWCAParams" MWCAResult-class Class "MWCAResult" defaultCoupledMWCAParams Default parameters for CoupledMWCA defaultMWCAParams Default parameters for MWCA mwTensor-package Multi-Way Component Analysis myALS_SVD Alternating Least Square Singular Value Decomposition (ALS-SVD) as an example of user-defined matrix decomposition. myCX CX Decomposition as an example of user-defined matrix decomposition. myICA Independent Component Analysis (ICA) as an example of user-defined matrix decomposition. myNMF Independent Component Analysis (ICA) as an example of user-defined matrix decomposition. mySVD Singular Value Decomposition (SVD) as an example of user-defined matrix decomposition. plotTensor3Ds Plot function for visualization of tensor data structure toyModel Toy model of coupled tensor data
Author(s)
NA
Maintainer: NA
References
Andrzej Cichocki et al., (2016). Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions
Andrzej Cichocki et al., (2015). Tensor Decompositions for Signal Processing Applications, IEEE SIGNAL PROCESSING MAGAZINE
Gene H. Golub et al., (2012). Matrix Computation (Johns Hopkins Studies in the Mathematical Sciences), Johns Hopkins University Press
Madeleine Udell et al., (2016). Generalized Low Rank Models, Foundations and Trends in Machine Learning, 9(1).
Andrzej CICHOCK, et. al., (2009). Nonnegative Matrix and Tensor Factorizations.
A. Hyvarinen. (1999). Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks, 10(3), 626-634.
Petros Drineas et al., (2008). Relative-Error CUR Matrix Decompositions, SIAM Journal on Matrix Analysis and Applications, 30(2), 844-881.
See Also
mySVD
, myALS_SVD
, myNMF
, myICA
, myCX
, MWCA
, CoupledMWCA
, plotTensor3Ds
Examples
ls("package:mwTensor")