predict.MVS {mvs} | R Documentation |
Make predictions from an "MVS" object.
Description
Make predictions from a "MVS" object.
Usage
## S3 method for class 'MVS'
predict(object, newx, predtype = "response", cvlambda = "lambda.min", ...)
Arguments
object |
An object of class "MVS". |
newx |
Matrix of new values for x at which predictions are to be made. Must be a matrix. |
predtype |
The type of prediction returned by the meta-learner. Supported are types "response", "class" and "link". |
cvlambda |
Values of the penalty parameters at which predictions are to be made. Defaults to the values giving minimum cross-validation error. |
... |
Further arguments to be passed to |
Value
A matrix of predictions.
Author(s)
Wouter van Loon <w.s.van.loon@fsw.leidenuniv.nl>
Examples
set.seed(012)
n <- 1000
X <- matrix(rnorm(8500), nrow=n, ncol=85)
top_level <- c(rep(1,45), rep(2,20), rep(3,20))
bottom_level <- c(rep(1:3, each=15), rep(4:5, each=10), rep(6:9, each=5))
views <- cbind(bottom_level, top_level)
beta <- c(rep(10, 55), rep(0, 30)) * ((rbinom(85, 1, 0.5)*2)-1)
eta <- X %*% beta
p <- 1 /(1 + exp(-eta))
y <- rbinom(n, 1, p)
fit <- MVS(x=X, y=y, views=views, type="StaPLR", levels=3, alphas=c(0,1,1), nnc=c(0,1,1))
coefficients <- coef(fit)
new_X <- matrix(rnorm(2*85), nrow=2)
predict(fit, new_X)
[Package mvs version 1.0.2 Index]