mshapiro.test {mvnormtest} | R Documentation |
Shapiro-Wilk Multivariate Normality Test
Description
Performs the Shapiro-Wilk test for multivariate normality.
Usage
mshapiro.test(U)
Arguments
U |
a numeric matrix of data values, the number of which must be for each sample between 3 and 5000. |
Value
A list with class "htest"
containing the following components:
statistic |
the value of the Shapiro-Wilk statistic. |
p.value |
the p-value for the test. |
method |
the character string |
data.name |
a character string giving the name(s) of the data. |
Author(s)
Slawomir Jarek (slawomir.jarek@gallus.edu.pl)
References
Czeslaw Domanski (1998) Wlasnosci testu wielowymiarowej normalnosci Shapiro-Wilka i jego zastosowanie. Cracow University of Economics Rector's Lectures, No. 37.
Patrick Royston (1982)
An Extension of Shapiro and Wilk's Test for Normality to Large
Samples.
Applied Statistics, 31, 115–124.
Patrick Royston (1982)
Algorithm AS 181: The Test for Normality.
Applied Statistics, 31, 176–180.
Patrick Royston (1995)
A Remark on Algorithm AS 181: The Test for Normality.
Applied Statistics, 44, 547–551.
See Also
shapiro.test
for univariate samples,
qqnorm
for producing a normal quantile-quantile plot.
Examples
library(mvnormtest)
data(EuStockMarkets)
C <- t(EuStockMarkets[15:29,1:4])
mshapiro.test(C)
C <- t(EuStockMarkets[14:29,1:4])
mshapiro.test(C)
R <- t(diff(t(log(C))))
mshapiro.test(R)
dR <- t(diff(t(R)))
mshapiro.test(dR)