power.mvnTest {mvnormalTest} | R Documentation |
Power Calculation using the Zhou-Shao's Multivariate Normality Test Statistic (T_n
)
Description
Empirical power calculation using the Zhou-Shao's multivariate normality test Statistic T_n
.
Usage
power.mvnTest(a, n, p, B = 1000, pct = c(0.01, 0.99), FUN, ...)
Arguments
a |
significance level ( |
n |
number of rows (observations). |
p |
number of columns (variables), |
B |
number of Monte Carlo simulations, default is 1000 (can increase B to increase the precision). |
pct |
percentiles of MK to get c1 and c2 described in the reference paper,default is (0.01, 0.99). |
FUN |
self-defined function for generate multivariate distribution. See example. |
... |
optional arguments passed to |
Value
Returns a numeric value of the estimated empirical power (value between 0 and 1).
References
Zhou, M., & Shao, Y. (2014). A powerful test for multivariate normality. Journal of applied statistics, 41(2), 351-363.
Examples
set.seed(12345)
## Power calculation against bivariate (p=2) independent Beta(1, 1) distribution ##
## at sample size n=50 for Tn at one-sided alpha = 0.05 ##
power.mvnTest(a = 0.05, n = 50, p = 2, B = 100, pct = c(0.01, 0.99), FUN=IMMV, D1=runif)
[Package mvnormalTest version 1.0.0 Index]