power.msk {mvnormalTest} | R Documentation |
Power Calculation using the Bowman and Shenton Test Statistic
Description
Empirical power calculation using Bowman and Shenton Test Statistic.
Usage
power.msk(a, n, p, B = 1000, FUN, ...)
Arguments
a |
significance level ( |
n |
number of rows (observations). |
p |
number of columns (variables), |
B |
number of Monte Carlo simulations, default is 1000 (can increase B to increase the precision). |
FUN |
self-defined function for generate multivariate distribution. See example. |
... |
optional arguments passed to |
Value
Returns a numeric value of the estimated empirical power (value between 0 and 1).
References
Bowman, K. O., & Shenton, L. R. (1975). Omnibus test contours for departures from normality based on \sqrt b_1
and b_2
. Biometrika, 62(2), 243-250.
Examples
set.seed(12345)
## Power calculation against bivariate (p=2) independent Beta(1, 1) distribution ##
## at sample size n=50 at one-sided alpha = 0.05 ##
power.msk(a = 0.05, n = 50, p = 2, B = 100, FUN=IMMV, D1=runif)
[Package mvnormalTest version 1.0.0 Index]