DH.test {mvnTest} | R Documentation |
Doornik-Hansen test for Multivariate Normality
Description
This function implements the Doornik-Hansen test for assessing multivariate normality.
Usage
DH.test(data, qqplot = FALSE)
Arguments
data |
A numeric matrix or data frame |
qqplot |
if |
Details
Calculates the value of the Doornik-Hansen test and the approximate p-value.
Value
DH |
the value of the test statistic |
p.value |
the p-value of the test |
data.name |
a character string giving the name of the data |
Note
The printing method and plotting are in part adapted from R package MVN
(version 4.0, Korkmaz, S. et al., 2015).
Author(s)
Rashid Makarov, Vassilly Voinov, Natalya Pya
References
Doornik, J. and Hansen, H. (2008). An omnibus test for univariate and multivariate normality. Oxford Bulletin of Economics and Statistics, 70, 915-925.
See Also
S2.test
,
AD.test
, CM.test
,
R.test
, HZ.test
Examples
## generating n bivariate normal random variables...
dat <- rmvnorm(n=200,mean=rep(0,2),sigma=matrix(c(4,2,2,4),2,2))
res <- DH.test(dat)
res
## generating n bivariate t distributed with 10df random variables...
dat <- rmvt(n=200,sigma=matrix(c(4,2,2,4),2,2)*.8,df=10,delta=rep(0,2))
res1 <- DH.test(dat)
res1
data(iris)
setosa <- iris[1:50, 1:4] # Iris data only for setosa
res2 <- DH.test(setosa, qqplot = TRUE)
res2
[Package mvnTest version 1.1-0 Index]