AD.test {mvnTest} | R Documentation |
Anderson-Darling test for multivariate normality
Description
This function implements the Anderson-Darling test for assessing multivariate normality. It calculates the value of the test and its approximate p-value.
Usage
AD.test(data, qqplot = FALSE)
Arguments
data |
A numeric matrix or data frame. |
qqplot |
If |
Value
AD |
the value of the test statistic. |
p.value |
the p-value of the test. |
Note
The printing method and plotting are in part adapted from R package MVN
(version 4.0, Korkmaz, S. et al., 2015).
The computations are relatively expensive as Monte Carlo procedure is used to calculate empirical p-vales.
Author(s)
Rashid Makarov, Vassilly Voinov, Natalya Pya
References
Paulson, A., Roohan, P., and Sullo, P. (1987). Some empirical distribution function tests for multivariate normality. Journal of Statistical Computation and Simulation, 28, 15-30
Henze, N. and Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality. Communications in Statistics - Theory and Methods, 19, 3595-3617
Selcuk Korkmaz, Dincer Goksuluk, and Gokmen Zararsiz. MVN: Multivariate Normality Tests, 2015. R package version 4.0
See Also
S2.test
,
CM.test
,
DH.test
,
R.test
,
HZ.test
Examples
## Not run:
## generating n bivariate normal random variables...
dat <- rmvnorm(n=100,mean=rep(0,2),sigma=matrix(c(4,2,2,4),2,2))
res <- AD.test(dat)
res
## generating n bivariate t distributed with 10df random variables...
dat <- rmvt(n=200,sigma=matrix(c(4,2,2,4),2,2),df=10,delta=rep(0,2))
res1 <- AD.test(dat)
res1
data(iris)
setosa <- iris[1:50, 1:4] # Iris data only for setosa
res2 <- AD.test(setosa, qqplot = TRUE)
res2
## End(Not run)