infIndexPlot.mlm {mvinfluence} | R Documentation |
Influence Index Plots for Multivariate Linear Models
Description
Provides index plots of some diagnostic measures for a multivariate linear model: Cook's distance, a generalized (squared) studentized residual, hat-values (leverages), and Mahalanobis squared distances of the residuals.
Usage
## S3 method for class 'mlm'
infIndexPlot(
model,
infl = mlm.influence(model, do.coef = FALSE),
FUN = det,
vars = c("Cook", "Studentized", "hat", "DSQ"),
main = paste("Diagnostic Plots for", deparse(substitute(model))),
pch = 19,
labels,
id.method = "y",
id.n = if (id.method[1] == "identify") Inf else 0,
id.cex = 1,
id.col = palette()[1],
id.location = "lr",
grid = TRUE,
...
)
Arguments
model |
A multivariate linear model object of class |
infl |
influence measure structure as returned by
|
FUN |
For |
vars |
All the quantities listed in this argument are plotted. Use
|
main |
main title for graph |
pch |
Plotting character for points |
id.method , labels , id.n , id.cex , id.col , id.location |
Arguments for the
labeling of points. The default is |
grid |
If TRUE, the default, a light-gray background grid is put on the graph |
... |
Arguments passed to |
Details
This function produces index plots of the various influence measures
calculated by influence.mlm
, and in addition, the measure
based on the Mahalanobis squared distances of the residuals from the origin.
Value
None. Used for its side effect of producing a graph.
Author(s)
Michael Friendly; borrows code from car::infIndexPlot
References
Barrett, B. E. and Ling, R. F. (1992). General Classes of Influence Measures for Multivariate Regression. Journal of the American Statistical Association, 87(417), 184-191.
Barrett, B. E. (2003). Understanding Influence in Multivariate Regression Communications in Statistics - Theory and Methods, 32, 667-680.
See Also
influencePlot.mlm
,
Mahalanobis
, infIndexPlot
,
Examples
# iris data
data(iris)
iris.mod <- lm(as.matrix(iris[,1:4]) ~ Species, data=iris)
infIndexPlot(iris.mod, col=iris$Species, id.n=3)
# Sake data
data(Sake, package="heplots")
Sake.mod <- lm(cbind(taste,smell) ~ ., data=Sake)
infIndexPlot(Sake.mod, id.n=3)
# Rohwer data
data(Rohwer, package="heplots")
Rohwer2 <- subset(Rohwer, subset=group==2)
rownames(Rohwer2)<- 1:nrow(Rohwer2)
rohwer.mlm <- lm(cbind(SAT, PPVT, Raven) ~ n + s + ns + na + ss, data=Rohwer2)
infIndexPlot(rohwer.mlm, id.n=3)