plot.mvgam {mvgam} | R Documentation |
Default mvgam plots
Description
This function takes a fitted mvgam
object and produces plots of smooth functions, forecasts, trends and
uncertainty components
Usage
## S3 method for class 'mvgam'
plot(
x,
type = "residuals",
series = 1,
residuals = FALSE,
newdata,
data_test,
trend_effects = FALSE,
...
)
Arguments
x |
|
type |
|
series |
|
residuals |
|
newdata |
Optional |
data_test |
Deprecated. Still works in place of |
trend_effects |
logical. If |
... |
Additional arguments for each individual plotting function. |
Details
These plots are useful for getting an overview of the fitted model and its estimated random effects or smooth functions, but the individual plotting functions and the functions from the marginaleffects package offer far more more customisation.
Value
A base R plot or set of plots
Author(s)
Nicholas J Clark
See Also
plot_mvgam_resids
, plot_mvgam_smooth
, plot_mvgam_fc
,
plot_mvgam_trend
, plot_mvgam_uncertainty
, plot_mvgam_factors
,
plot_mvgam_randomeffects
, plot_predictions
, plot_slopes
Examples
# Simulate some time series
dat <- sim_mvgam(T = 80, n_series = 3)
# Fit a basic model
mod <- mvgam(y ~ s(season, bs = 'cc') + s(series, bs = 're'),
data = dat$data_train,
trend_model = RW(),
chains = 2)
# Plot predictions and residuals for each series
plot(mod, type = 'forecast', series = 1)
plot(mod, type = 'forecast', series = 2)
plot(mod, type = 'forecast', series = 3)
plot(mod, type = 'residuals', series = 1)
plot(mod, type = 'residuals', series = 2)
plot(mod, type = 'residuals', series = 3)
# Plot model effects
plot(mod, type = 'smooths')
plot(mod, type = 're')
# More flexible plots with 'marginaleffects' utilities
library(marginaleffects)
plot_predictions(mod, condition = 'season', type = 'link')
plot_predictions(mod,
condition = c('season', 'series', 'series'),
type = 'link')
plot_predictions(mod, condition = 'series', type = 'link')
# When using a State-Space model with predictors on the process
# model, set trend_effects = TRUE to visualise process effects
mod <- mvgam(y ~ -1,
trend_formula = ~ s(season, bs = 'cc'),
data = dat$data_train,
trend_model = RW(),
chains = 2)
plot(mod, type = 'smooths', trend_effects = TRUE)
# But marginaleffects functions work without any modification
plot_predictions(mod, condition = 'season', type = 'link')