Multivariate Data Analysis Laboratory


[Up] [Top]

Documentation for package ‘mvdalab’ version 1.7

Help Pages

mvdalab-package Multivariate Data Analysis Laboratory (mvdalab)
acfplot Plot of Auto-correlation Funcion
ap.plot Actual versus Predicted Plot and Residuals versus Predicted
bca.cis Bias-corrected and Accelerated Confidence Intervals
bidiagpls.fit Bidiag2 PLS
BiPlot Generates a biplot from the output of an 'mvdareg' and 'mvdapca' object
boot.plots Plots of the Output of a Bootstrap Simulation for an 'mvdareg' Object
coef.mvdareg Extract Information From a plsFit Model
coefficients.boots BCa Summaries for the coefficient of an mvdareg object
coefficients.mvdareg Extract Summary Information Pertaining to the Coefficients resulting from a PLS model
coefficientsplot2D 2-Dimensionsl Graphical Summary Information Pertaining to the Coefficients of a PLS
coefsplot Graphical Summary Information Pertaining to the Regression Coefficients
College Data for College Level Examination Program and the College Qualification Test
contr.niets Cell Means Contrast Matrix
ellipse.mvdalab Ellipses, Data Ellipses, and Confidence Ellipses
imputeBasic Naive imputation of missing values.
imputeEM Expectation Maximization (EM) for imputation of missing values.
imputeQs Quartile Naive Imputation of Missing Values
imputeRough Naive Imputation of Missing Values for Dummy Variable Model Matrix
introNAs Introduce NA's into a Dataframe
jk.after.boot Jackknife After Bootstrap
loadings.boots BCa Summaries for the loadings of an mvdareg object
loadings.mvdareg Summary Information Pertaining to the Bootstrapped Loadings
loadingsplot Graphical Summary Information Pertaining to the Loadings
loadingsplot2D 2-Dimensionsl Graphical Summary Information Pertaining to the Loadings of a PLS or PCA Analysis
mewma Generates a Hotelling's T2 Graph of the Multivariate Exponentially Weighted Average
model.matrix.mvdareg 'model.matrix' creates a design (or model) matrix.
MultCapability Principal Component Based Multivariate Process Capability Indices
MVcis Calculate Hotelling's T2 Confidence Intervals
MVComp Traditional Multivariate Mean Vector Comparison
mvdaboot Bootstrapping routine for 'mvdareg' objects
mvdalab Multivariate Data Analysis Laboratory (mvdalab)
mvdaloo Leave-one-out routine for 'mvdareg' objects
mvdareg Partial Least Squares Regression
mvrnorm.svd Simulate from a Multivariate Normal, Poisson, Exponential, or Skewed Distribution
mvrnormBase.svd Simulate from a Multivariate Normal, Poisson, Exponential, or Skewed Distribution
my.dummy.df Create a Design Matrix with the Desired Constrasts
no.intercept Delete Intercept from Model Matrix
pca.nipals PCA with the NIPALS algorithm
pcaFit Principal Component Analysis
PE Percent Explained Variation of X
Penta Penta data set
perc.cis Percentile Bootstrap Confidence Intervals
plot.cp Plotting Function for Score Contributions.
plot.mvcomp Plot of Multivariate Mean Vector Comparison
plot.mvdapca Principal Component Analysis
plot.mvdareg General plotting function for 'mvdareg' and 'mvdapaca' objects.
plot.plusminus 2D Graph of the PCA scores associated with a plusminusFit
plot.R2s Plot of R2
plot.smc Plotting function for Significant Multivariate Correlation
plot.sr Plotting function for Selectivity Ratio.
plot.wrtpls Plots of the Output of a Permutation Distribution for an 'mvdareg' Object with 'method = "bidiagpls"'
plsFit Partial Least Squares Regression
plusminus.fit PlusMinus (Mas-o-Menos)
plusminus.loo Leave-one-out routine for 'plusminus' objects
plusMinusDat plusMinusDat data set
plusminusFit Plus-Minus (Mas-o-Menos) Classifier
predict.mvdareg Model Predictions From a plsFit Model
print.empca Expectation Maximization (EM) for imputation of missing values.
print.mvcomp Traditional Multivariate Mean Vector Comparison
print.mvdapca Principal Component Analysis
print.mvdareg Print Methods for mvdalab Objects
print.npca PCA with the NIPALS algorithm
print.plusminus Print Methods for plusminus Objects
print.proC Comparison of n-point Configurations vis Procrustes Analysis
print.R2s Cross-validated R2, R2 for X, and R2 for Y for PLS models
print.roughImputation Naive Imputation of Missing Values for Dummy Variable Model Matrix
print.seqem Sequential Expectation Maximization (EM) for imputation of missing values.
print.smc Significant Multivariate Correlation
print.sr Selectivity Ratio
proCrustes Comparison of n-point Configurations vis Procrustes Analysis
R2s Cross-validated R2, R2 for X, and R2 for Y for PLS models
ScoreContrib Generates a score contribution plot
scoresplot 2D Graph of the scores
SeqimputeEM Sequential Expectation Maximization (EM) for imputation of missing values.
smc Significant Multivariate Correlation
smc.acfTest Test of the Residual Significant Multivariate Correlation Matrix for the presence of Autocorrelation
smc.error Significant Multivariate Correlation
smc.modeled Significant Multivariate Correlation
sr Selectivity Ratio
sr.error Selectivity Ratio
sr.modeled Selectivity Ratio
summary.mvdareg Partial Least Squares Regression
summary.mvdareg.default Partial Least Squares Regression
summary.plusminus Plus-Minus (Mas-o-Menos) Classifier
summary.plusminus.default Plus-Minus (Mas-o-Menos) Classifier
T2 Generates a Hotelling's T2 Graph
Wang_Chen Bivariate process data.
Wang_Chen_Sim Simulated process data from a plastics manufacturer.
weight.boots BCa Summaries for the weights of an mvdareg object
weights.mvdareg Extract Summary Information Pertaining to the Bootstrapped weights
weightsplot Extract Graphical Summary Information Pertaining to the Weights
weightsplot2D Extract a 2-Dimensional Graphical Summary Information Pertaining to the weights of a PLS Analysis
wrtpls.fit Weight Randomization Test PLS
Xresids Generates a Graph of the X-residuals
XresidualContrib Generates the squared prediction error contributions and contribution plot
y.loadings Extract Summary Information Pertaining to the y-loadings
y.loadings.boots Extract Summary Information Pertaining to the y-loadings