form_lacv_forward {mvLSWimpute} | R Documentation |
Function to form the local autocovariance array for the forecasting / backcasting step.
Description
This function generates the local autocovariance (LACV) array that is used in the forecasting / backcasting step to form the prediction equations.
Usage
form_lacv_forward(spectrum, index, p.len = 2)
form_lacv_backward(spectrum, index, p.len = 2)
Arguments
spectrum |
Local wavelet spectral matrix for which we wish to form the local autocovariance array. |
index |
Time index of the missing data which we wish to impute. |
p.len |
Number of terms to include in the clipped predictor when forecasting / backcasting. |
Details
In order to form the one-step ahead predictor for use in the imputation algorithm of Wilson et al. (2021), one needs the local autocovariance (LACV). This is computed using the relationship between the LACV and the local wavelet spectrum (LWS). See equations (4) and (5) in Wilson et al. (2021) for more details.
Value
Returns the local autocovariance array that can be used as an input to the pred_eq_forward
or pred_eq_backward
function.
Author(s)
Rebecca Wilson
References
Wilson, R. E., Eckley, I. A., Nunes, M. A. and Park, T. (2021) A wavelet-based approach for imputation in nonstationary multivariate time series.
_Statistics and Computing_ *31* Article 18, doi:10.1007/s11222-021-09998-2.
Taylor, S.A.C., Park, T.A. and Eckley, I. (2019) Multivariate locally stationary wavelet analysis with the mvLSW R package.
_Journal of Statistical Software_ *90*(11) pp. 1-16, doi:10.18637/jss.v090.i11.
Park, T., Eckley, I. and Ombao, H.C. (2014) Estimating time-evolving partial coherence between signals via multivariate locally stationary wavelet processes. _IEEE Transactions on Signal Processing_ *62*(20) pp. 5240-5250.
See Also
pred_eq_forward
, pred_eq_backward
Examples
## Sample bivariate locally stationary time series
set.seed(1)
X <- matrix(rnorm(2 * 2^8), ncol = 2)
X[1:2^7, 2] <- 3 * (X[1:2^7, 2] + 0.95 * X[1:2^7, 1])
X[-(1:2^7), 2] <- X[-(1:2^7), 2] - 0.95 * X[-(1:2^7), 1]
X[-(1:2^7), 1] <- X[-(1:2^7), 1] * 4
X <- as.ts(X)
# create some missing values, taking care to provide some data at the start of the series
missing.index = sort(sample(10:2^8, 30))
X[missing.index, ] <-NA
# estimate the spectrum
spec = spec_estimation(X)
out <- form_lacv_forward(spec$spectrum, missing.index[1], p.len=2)