AutoCorrIP {mvLSW} | R Documentation |
Wavelet Autocorrelation Inner Product Functions
Description
Inner product of cross-level wavelet autocorrelation functions.
Usage
AutoCorrIP(J, filter.number = 1, family = "DaubExPhase",
crop = TRUE)
Arguments
J |
Number of levels. |
filter.number |
Number of vanishing moments of the wavelet function. |
family |
Wavelet family, either |
crop |
Logical, should the output of |
Details
Let \psi(x)
denote the mother wavelet and the wavelet
defined for level j as \psi_{j,k}(x) = 2^{j/2}\psi(2^{j}x-k)
.
The wavelet autocorrelation function between levels j & l
is therefore:
\Psi_{j,l}(\tau) = \sum_\tau \psi_{j,k}(0)\psi_{l,k-\tau}(0)
Here, integer \tau
defines the offset of the latter
wavelet function relative to the first.
The inner product of this wavelet autocorrelation function is
defined as follows for level indices j, l & h and offset \lambda
:
A^{\lambda}_{j,l,h} = \sum_{\tau} \Psi_{j,l}(\lambda - \tau) \Psi_{h,h}(\tau)
Value
A 4D array (invisibly returned) of order
LxJxJxJ where L depends on the specified wavelet function.
If crop=TRUE
then L=2^{J+1}
+1. The first dimension
defines the offset \lambda
, whilst the second to
fourth dimensions identify the levels indexed by j, l & h
respectively.
References
Taylor, S.A.C., Park, T.A. and Eckley, I. (2019) Multivariate locally stationary wavelet analysis with the mvLSW R package. Journal of statistical software 90(11) pp. 1–16, doi: 10.18637/jss.v090.i11.
Fryzlewicz, P. and Nason, G. (2006) HaarFisz estimation of evolutionary wavelet spectra. Journal of the Royal Statistical Society. Series B, 68(4) pp. 611-634.
See Also
ipndacw
.
Examples
## Plot Haar autocorrelation wavelet functions inner product
AInnProd <- AutoCorrIP(J = 8, filter.number = 1, family = "DaubExPhase")
## Not run:
MaxOffset <- 2^8
for(h in 6:8){
x11()
par(mfrow = c(3, 3))
for(l in 6:8){
for(j in 6:8){
plot(-MaxOffset:MaxOffset, AInnProd[, j, l, h], type = "l",
xlab = "lambda", ylab = "Autocorr Inner Prod",
main = paste("j :", j, "- l :", l, "- h :", h))
}
}
}
## End(Not run)
## Special case relating to ipndacw function from wavethresh package
Amat <- matrix(NA, ncol = 8, nrow = 8)
for(j in 1:8) Amat[, j] <- AInnProd[2^8 + 1, j, j, ]
round(Amat, 5)
round(ipndacw(J = -8, filter.number = 1, family = "DaubExPhase"), 5)